
10623 Roselle Street, San Diego, CA 92121 C (858) 550-9559 C www.acces.io

 USB Software Reference Manual

USB Software Reference Manual

1

TABLE OF CONTENTS

INTRODUCTION. 3

DRIVER REFERENCE.. 4

DIGITAL INPUT / OUTPUT. 8

COUNTER / TIMERS. 12

ANALOG TO DIGITAL.. 16

DIGITAL TO ANALOG .. 23

GENERAL FUNCTIONS. 28

.NET. 30

2

INTRODUCTION

This manual provides a reference to the USB function driver, AIOUSB, and other provided software that

applies to our USB products. Serial products simply appear as “COM” ports and are operated using the

built-in Windows serial interfaces.

You can use this document in a number of ways. All users should read the entirety of this introduction,

first. After that the most common is to read the source code of one of our sample programs in the

programming language of your choice, and refer to this manual for the description of each API used. Or,

you could read the entire manual front-to-back; although this may seem inefficient, it may provide useful

insight into other APIs or devices you may be able to use in your system, which the admittedly rather

simple sample programs may not demonstrate.

Because the AIOUSB driver is shared among all of our USB products, not all of the API information in this

manual will apply to your specific hardware. W e’ve provided some easy tools to determine if you should

bother reading about a particular API section. For example, the beginning of each section will look similar

to the following:

Explanation

DIO_Read1 is the name of the API function this section of the manual is describing.

The list of product types has one valid, highlighted, I/O type, in this case Digital Inputs. The other types

are displayed in gray, indicating they do not apply.

This indicates the DIO_Read1 function will be used only with digital inputs on our USB products. This

API’s section of the manual will not be useful if you’re using one of the other I/O types, such as Analog

Outputs.

In addition to providing a quick reference table at the start of each API function, certain quick-reference or

pertinent facts will be presented below the table, giving you valuable insight into the quirks or pitfalls you

may encounter. For example, the full table for DIO_Read1 actually looks like the following:

DIO_Read1
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

3

DIO_Read1
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The bit is returned as “0" or “1" - be careful in your programming language if you are using true / false.

A breakdown of what each category description means follows:

RS-232, -422 / -485: Any serial device. Included only for completeness, as serial ports use the

standard W indows Comm interfaces and are documented by Microsoft.

DIGITAL INPUTS: TTL, CMOS, LVTTL, and Isolated Input types are all included here.

AIOUSB treats all boolean inputs generically as “bits”. Contrast with

Buffered DI, DO, DIO, below.

DIGITAL OUTPUTS: TTL, CMOS, LVTTL and Isolated Output types are all included here. AIOUSB

treats all boolean inputs generically as “bits”. Contrast with Buffered DI, DO, DIO,

below.

ANALOG INPUTS: All inputs using “Analog-to-Digital Converter” chips. These boards accept

analog signals (voltage, current), and create data the computer can use.

ANALOG OUTPUTS: All outputs that produce analog signals, including voltage and current. Note there

are two sub-types of Analog Outputs in our current USB product lineup:

W aveform and DC. Some functions that are marked with this category only apply

to the “W aveform” capable models.

BUFFERED DI, DO, DIO: “High-Speed” digital “Bus” cards. This category applies only to boards

that use “bulk” USB to achieve speeds higher than the ~4000/second

transaction rate would otherwise allow.

COUNTER TIMERS: This category applies to counter-timer and other frequency devices, such as the

ever popular 8254. Generally used to count, measure or produce frequencies or

pulse trains.

Please note that many models are “Multi-Function” and contain I/O falling into more than one of these

categories; digital input/output being the most obvious. Additionally, some specific API functions apply to

all devices.

DRIVER REFERENCE
AIOUSB provides a standard interface to all our Data Acquisition USB modules. Each specific USB

device will use a subset of the driver calls listed below, based on its specific capabilities and needs. The

first two function calls listed (GetDevices and QueryDeviceInfo) are used by every device as part of the

initialization process for your software code. For example source code, please refer to any of the

numerous software sample programs provided.

The constants diFirst (equal to FFFFFFFE hex) and diOnly (equal to FFFFFFFD hex) can be passed for

DeviceIndex in place of an actual device index. diFirst causes the function to operate on the first device,

whatever its device index. diOnly causes the function to operate on the only device if is only one, or to

return "ERROR_DUP_NAME" (equal to 52 decimal) if there's more than one device. Using these defined

constants can greatly simplify programming for USB devices in situations where only a single USB device

will be installed in the system.

For example, if you know that only one of our USB data acquisition devices at a time, of a

known type, will ever be installed in the system you’re writing the program for, you can

4

skip GetDevices and QueryDeviceInfo entirely. Using diOnly instead guarantees you will

find the correct device index. This can reduce the code required to operate the unit to a

single call to a single API function in some cases. Our sample programs demonstrate

how to handle multiple boards, not the simple case.

All DW ORD return values other than GetDevices() and ResolveDeviceIndex() are W indows error codes,

and will be "ERROR_SUCCESS" (equal to 0) if no error occurred. If the USB device has been removed

during use, the error returned is "ERROR_DEVICE_REMOVED" (equal to 1617 decimal) and will persist

until ClearDevices() has been called. If this state is cleared and the board was not reconnected, the error

returned is "ERROR_FILE_NOT_FOUND" (equal to 2). Versions of AIOUSB.dll prior to 2.1 return

"ERROR_DEV_NOT_EXIST" (equal to 55 decimal) under both conditions. The full list of W indows error

codes is in W inError.h, which can also be found on the web.

GetDevices
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Applies to every device, but optional if you know you’ll only ever have one at a time in your system

unsigned long GetDevices(void)

Returns a 32-bit bit-mask. Each bit set to "1" indicates an AIOUSB device was detected at a device index

corresponding to the set bit number. For example, if the return is 0x00000104, then device indices 2 and

8 are USB devices that use this driver.

Returns 0 if no devices found (which may mean the driver is not installed properly).

Note, this does not return one device index… it returns a pattern of bits indicating all valid device indices.

This also prevents detection of more than 32 AIOUSB devices on one computer simultaneously. Let us

know if this is of any concern for your application.

The use of W inUSB limits each device to one process at a time, and all available devices are opened in

order to get a device index. To close devices so that other processes can open them, use

AIOUSB_CloseDevice().

QueryDeviceInfo
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Applies to every device, but optional if you know you’ll only ever have one model of card at a time in

your system

unsigned long QueryDeviceInfo(

unsigned long DeviceIndex - number from 0-31 of the device you want to query.

unsigned long *pPID - DW ORD gets set to the ProductID of the device at DeviceIndex.

unsigned long *pNameSize - DW ORD that specifies the size of the pName buffer before the call. After

the call it's set to the size needed for the entire name. If your buffer is too small, the data will be

truncated.

char *pName - pointer to char[] buffer. This is an array of characters, not a null-terminated string. Length

of string is passed back via pNameSize

unsigned long *pDIOBytes - DW ORD gets set to how many bytes of DIO the device supports.

unsigned long *pCounters - DW ORD gets set to how many 8254-compatible counters are available.

)

5

AIOUSB_CloseDevice
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Applies to every device, but only when using multiple simultaneous proccesses

unsigned long AIOUSB_CloseDevice(

unsigned long DeviceIndex - number from 0-31 of the device you want to close.

)

Explicitly closes handles to a device, mainly so that it can be opened by another process. The standard

use for that situation is to call GetDevices() to get the bitmask of devices, call QueryDeviceInfo() for

devices as needed to find the one(s) you want to work with, then call AIOUSB_CloseDevice() for each

other found device.

ClearDevices
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Use when you get errors from the device being unplugged unexpectedly

unsigned long ClearDevices(void)

Closes handles and clears records of unplugged devices.

ResolveDeviceIndex
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long ResolveDeviceIndex(

unsigned long DeviceIndex - the device index you want to resolve, usually diFirst or diOnly

)

Returns a device index from 0-31 corresponding to the index passed in, or FFFFFFFF hex if it can't be

resolved.

GetDeviceByEEPROMByte
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long GetDeviceByEEPROMByte(

unsigned char Data - the byte at the beginning of the EEPROM of the device you want

)

Finds a device with the specified byte at address 0x000 in the custom EEPROM area.

If there are multiple matching devices, returns the first one's device index (0-31) and sets the last error

code to ERROR_DUP_NAME. If there's one matching device, returns its device index and sets the last

error code to ERROR_SUCCESS. (You can get the last error code with the W indows API call

GetLastError().) If there aren't any matching devices, returns FFFFFFFF hex.

Note: avoid 0x00 and 0xFF, since those can match uninitialized EEPROMs.

6

GetDeviceByEEPROMData
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long GetDeviceByEEPROMData(

unsigned long StartAddress - the address of the beginning of the block to look for

unsigned long DataSize - the length of the block to look for

unsigned char *pData - a pointer to the block of data to look for

)

Finds a device based on custom EEPROM data, like GetDeviceByEEPROMByte(), except that it can look

for a larger block at any position in the custom EEPROM area.

7

DIGITAL INPUT / OUTPUT

DIO_Configure
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The structure format changes based on how many bytes of data the card family supports

unsigned long DIO_Configure(

unsigned long DeviceIndex - number from 0-31 of the device you want to configure

unsigned char bTristate - boolean value. TRUE causes all bits on the device to enter tristate

(high-impedance) mode. FALSE removes the tristate. The tristate is changed after the

remainder of the configuration has occurred. All devices with this feature power-on in the "tristate"

mode at this time.

void *pOutMask - a pointer to the first element of an array of bits; one bit per I/O port. Each "1" bit in the

array indicates that the corresponding port of the device is Output. In this context "port" means "a

group of one or more DIO bits for which a single direction control bit determines the input vs

output state for all the bits in the group."

void *pData - a pointer to the first element of an array of bytes. Each byte is copied to the digital output

ports on the device before the ports are taken out of tristate. Any bytes in the array associated

with ports configured as input are ignored.

)

The sizes of the out mask and data for specific DIO boards are as follows:

USB-DIO-32 USB-IIRO-xx USB-Dxx16A USB-DIO-96

Out Mask 1 byte 1 byte 1 byte 2 bytes

Data 4 bytes 4 bytes 4 bytes 12 bytes

W hile byte arrays are the most generic, most of these are small enough to use a more specific type. 12

bytes doesn't match such a type, however.

Pascal Visual Basic 6 Visual Basic .NET C/C++

1 byte Byte Byte Byte unsigned char

2 bytes W ord Integer Short unsigned short

4 bytes LongW ord Long Integer unsigned long

DIO_ConfigureEx
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The USB-DIO-16A family has only two tristate groups, “A”, and “all other digital ports”

unsigned long DIO_ConfigureEx(

unsigned long DeviceIndex - number from 0-31 of the device you want to configure

void *pOutMask - a pointer to the first element of an array of bytes; one byte per 8 ports or fraction. Each

"1" bit in the array indicates that the corresponding byte of the device is Output.

void *pData - a pointer to the first element of an array of bytes; one byte per port. Each byte is copied to

the digital output ports on the device before the ports are taken out of tristate. Any bytes in the

array associated with ports configured as input are ignored.

8

void *pTristateMask - a pointer to the first element of an array of bytes; one byte per 8 tristate groups or

fraction. Each "1" bit in the array causes the corresponding tristate group to enter tristate

(high-impedance) mode. A “0" bit removes the tristate. The tristate is changed after the

remainder of the configuration has occurred. All devices with this feature power-on in the "tristate"

mode at this time.

)

DIO_ConfigurationQuery
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Normally your program will simply “remember” what it last sent to “DIO_Configure...”

unsigned long DIO_ConfigurationQuery(

unsigned long DeviceIndex - number from 0-31 of the device whose configuration you want to query

void *pOutMask - a pointer to the first element of an array of bytes; one byte per 8 ports or fraction. Each

bit in the array will be set to "1" if the corresponding port is an Output, or "0" if it's an Input

void *pTristateMask - a pointer to the first element of an array of bytes; one byte per 8 tristate groups or

fraction. Each bit in the array will be set to "1" if the corresponding tristate group is in tristate

(high-impedance) mode, or a "0" if not

)

DIO_WriteAll
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The most efficient method of writing to digital outputs

unsigned long DIO_WriteAll(

unsigned long DeviceIndex - number from 0-31 of the device to which you wish to write all output bits

void *pData - pointer to the first element of an array of bytes. Each byte is copied to the corresponding

output byte. Bytes written to ports configured as inputs are ignored

)

Note that the size of "all" is the same as the size of the data given under DIO_Configure.

DIO_Write8
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

This function will give unexpected results unless you call DIO_W riteAll or DIO_Configure first.

unsigned long DIO_Write8(

unsigned long DeviceIndex - number from 0-31 of the device to which you want to write an output byte

unsigned long ByteIndex - Number of the byte you wish to change. W rites to bytes configured as inputs

are ignored

unsigned char Data - one byte. The byte will be copied to the port outputs. Each set bit will cause the

same port bit to be set to "1"

)

9

DIO_Write1
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

This function will give unexpected results unless you call DIO_W riteAll or DIO_Configure first.

unsigned long DIO_Write1(

unsigned long DeviceIndex - number from 0-31 of the device to which you want to write an output bit

unsigned long BitIndex - Number of the bit you wish to change. W rites to bits configured as inputs are

ignored

unsigned char bData - boolean. TRUE will set the bit to "1", FALSE will clear the bit to "0"

)

DIO_ReadAll
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The most efficient method of reading digital inputs.

unsigned long DIO_ReadAll(

unsigned long DeviceIndex - number from 0-31 of the device from which you wish to read all digital bits

void *Buffer - pointer to the first element of an array of bytes. Each port will be read, and the reading

stored in the corresponding byte in the array.

)

Note that the size of "all" is the same as the size of the data given under DIO_Configure.

DIO_Read8
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The driver performs a ReadAll and returns the selected byte

unsigned long DIO_Read8(

unsigned long DeviceIndex - number from 0-31 of the device from which you wish to read a byte

unsigned long ByteIndex - Number of the byte you wish to read

unsigned char *pBuffer - pointer to a byte in which the input byte will be stored. Data read from ports

configured as output results in a "read-back" of the output

)

DIO_Read1
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The driver performs a ReadAll and returns the selected bit

unsigned long DIO_Read1(

unsigned long DeviceIndex - number from 0-31 of the device from which you wish to read a bit

unsigned long BitIndex - Number of the bit you wish to read

unsigned char *pBuffer - pointer to a byte which will be set to zero or one based on the input bit. Data

read from ports configured as output results in a "read-back" of the output

)

10

DIO_StreamOpen
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long DIO_StreamOpen(

unsigned long DeviceIndex - number from 0-31 of the device through which you wish to stream data

unsigned long bIsRead - boolean. TRUE will open a stream for reading, FALSE will open a stream for

writing

)

DIO_StreamClose
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long DIO_StreamClose(

unsigned long DeviceIndex - number from 0-31 of the device whose stream you wish to close

)

DIO_StreamSetClocks
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long DIO_StreamSetClocks(

unsigned long DeviceIndex - number from 0-31 of the device for which you wish to set stream clocks

double *ReadClockHz - a pointer to an IEEE double-precision value indicating the desired frequency of an

internal read clock; it will be changed to the actual frequency achieved. Use "0" for an external

read clock

double *W riteClockHz - a pointer to an IEEE double-precision value indicating the desired frequency of an

internal write clock; it will be changed to the actual frequency achieved. Use "0" for an external

write clock

)

DIO_StreamFrame
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

If opened as input, the FramePoints must be a multiple of 256 or you will generate error 31

“ERROR_GEN_FAILURE”

unsigned long DIO_StreamFrame(

unsigned long DeviceIndex - number from 0-31 of the device through which you wish to stream data

unsigned long FramePoints - number of W ORD-sized points you wish to stream

unsigned short *pFrameData - pointer to the beginning of the block of data you wish to stream

unsigned long *BytesTransferred - pointer to a DW ORD that will receive the amount of data actually

transferred, in BYTEs

)

11

COUNTER / TIMERS

An important note about the following CTR_ family of functions:

Each of these functions is designed to operate in one of two addressing modes. The parameter

“BlockIndex” refers to 8254 chips, each of which contains 3 “Counters”. CounterIndex refers to the

counters inside the 8254s. In the primary addressing mode you specify the block and the counter. In the

secondary addressing mode, you specify zero (0) for the block, and consider the counters to be

addressed sequentially. That is, BlockIndex 3, CounterIndex 1 can also be addressed as BlockIndex 0,

CounterIndex 10. The equation to determine the secondary or sequential CounterIndex given the primary

or block values is as follows (they simply count consecutively):

sequential PrimaryCounterIndex = BlockIndex * 3 + CounterIndex

Please note, CounterIndex values associated with BlockIndex 0 are compatible with either addressing

mode, there is no need to tell the driver which addressing mode you wish to use.

CTR_8254Mode
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long CTR_8254Mode(

unsigned long DeviceIndex - number from 0-31 of the device on which you wish to configure an 8254

mode

unsigned long BlockIndex - number indicating which 8254 you wish to configure.

unsigned long CounterIndex - number from 0-2 indicating which counter on the specified 8254 you wish to

configure

unsigned long Mode - a number from 0-5 specifying which 8254 mode you want the specified counter to

be.

)

Note: issuing a mode to an 8254 counter without also issuing a load causes the counter to cease

counting. This allows you to use the counter as a digital output: mode 0 causes the counter output to

immediately clear to zero, and mode 1 causes the counter output to immediately set to one.

CTR_8254Load
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long CTR_8254Load(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to load an 8254

counter

unsigned long BlockIndex - number indicating which 8254 you wish to load

unsigned long CounterIndex - number from 0-2 indicating which counter on the specified 8254 you wish to

load

unsigned short LoadValue - a number from 0 to 65535 which you wish loaded into the specified counter

)

12

CTR_8254ModeLoad
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long CTR_8254ModeLoad(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to mode and load an

8254 counter

unsigned long BlockIndex - number indicating which 8254 you wish to mode and load

unsigned long CounterIndex - number from 0-2 indicating which counter on the specified 8254 you wish to

mode and load

unsigned long Mode - a number from 0-5 specifying which 8254 mode you want the specified counter to

be

unsigned short LoadValue - a number from 0 to 65535 which you wish loaded into the specified

counter

)

CTR_8254ReadModeLoad
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The read value is acquired before the mode or write happens

unsigned long CTR_8254ReadModeLoad(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to read, mode, and

load an 8254 counter

unsigned long BlockIndex - number indicating which 8254 you wish to read, mode, and load

unsigned long CounterIndex - number from 0-2 indicating which counter on the specified 8254 you wish to

read, mode, and load

unsigned long Mode - a number from 0-5 specifying which 8254 mode you want the specified counter to

be

unsigned short LoadValue - a number from 0 to 65535 which you wish loaded into the specified counter

unsigned short *pReadValue - a pointer to a W ORD in which will be stored the value latched and read

from the specified counter. The reading is taken *before* the mode and load occur

)

CTR_8254Read
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long CTR_8254Read(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to read an 8254

counter

unsigned long BlockIndex - number indicating which 8254 you wish to read

unsigned long CounterIndex - number from 0-2 indicating which counter on the specified 8254 you wish to

read

unsigned short *pReadValue - a pointer to a W ORD in which will be stored the value latched and read

from the specified counter

)

13

CTR_8254ReadAll
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Currently only supported by the USB-CTR-15. Call if you need support for this function.

unsigned long CTR_8254ReadAll(

unsigned long DeviceIndex - number from 0-31 indicating on which

device you wish to read all 8254 counters

unsigned short *pData - a pointer to the first of an array of W ORDs in

which will be stored the values latched and read from the

counters

)

CTR_8254ReadStatus
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The meaning of the status is best described in the 8254 chip spec. Consult the CD\ChipDocs directory.

unsigned long CTR_8254ReadStatus(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to read an 8254

counter

unsigned long BlockIndex - number indicating which 8254 you wish to read

unsigned long CounterIndex - number from 0-2 indicating which counter on the specified 8254 you wish to

read

unsigned short *pReadValue - a pointer to a W ORD in which will be stored the value latched and read

from the specified counter

unsigned char *pStatus - a pointer to a BYTE in which will be stored the status latched and read from the

specified counter

)

CTR_StartOutputFreq
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long CTR_StartOutputFreq(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to output a frequency

unsigned long BlockIndex - number indicating which 8254 you wish to output a frequency from

double *pHz - pointer to a double precision IEEE floating point number containing the desired output

frequency. This value is set by the driver to the actual frequency that will be output, as limited by

the device’s capabilities.

)

This function is currently
only supported by the
USB-CTR-15.

14

CTR_8254SelectGate() and CTR_8254ReadLatched() are used in measuring frequency. To measure

frequency one must count pulses for a known duration. In simplest terms, the number of pulses that

occur for 1 second translates directly to Hertz. In the USB-CTR-15 and other supported devices, you can

create a known duration by configuring one counter to act as a “gating” signal for any collection of other

counters. The other “measurement” counters will only count during the “high” side of the gate signal,

which we can control.

So, to measure frequency you 1) create a gate signal of known duration; 2) connect this gating signal to

the gate pins of all the “measurement” counters; 3) call CTR_8254SelectGate() to tell the board which

counter is generating that gate; and 4) call CTR_8254ReadLatched() periodically to read the latched count

values from all the “measurement” counters.

In practice, it may not be possible to generate a gating signal of sufficient duration from a single counter.

Simply concatenate two or more counters into a series, or daisy-chain, and use the last counter’s output

as your gating signal. This last counter in the chain should be reported as the “gate source” using

CTR_8254SelectGate().

Once a value has been read from a counter using the CTR_8254ReadLatched() call, it can be translated

into actual Hz by dividing the count value returned by the high-side-duration of the gating signal, in

seconds. For example, if your gate is configured for 10Hz, the high-side lasts 0.05seconds; if you read

1324 counts via the CTR_8254ReadLatched() call, the frequency would be “1324 / 0.05", or 26.48KHz.

CTR_8254SelectGate
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Currently only supported by the USB-CTR-15. Call if you need support for this function.

unsigned long CTR_8254SelectGate(- This function selects a counter for use as the gate in frequency

measurement on other counters, and starts the frequency measurement process.

unsigned long DeviceIndex - number from 0-31 indicating which device you wish to select a gate for

unsigned long GateIndex - number from 0-14 indicating which counter you wish to select as a gate; this is

in "blockless" addressing

)

CTR_8254ReadLatched
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Currently only supported by the USB-CTR-15. Call if you need support for this function.

unsigned long CTR_8254ReadLatched(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to read all 8254

counters

unsigned short *pData - a pointer to the first of an array of W ORDs in which will be stored the values

latched and read from the counters. After the array in the pointer buffer is an additional BYTE.

This byte contains useful information when optimizing polling rates. If the value of the byte is “0",

you’re looking at old data, and are reading faster than your Gate signal is running.

)

15

ANALOG TO DIGITAL

ADC_GetChannelV
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The other easiest way, but often can’t achieve more than 100Hz, slower depending on options.

unsigned long ADC_GetChannelV(- This simple function takes A/D data from one channel and converts

it to voltage. It also averages oversamples for the channel.

unsigned long DeviceIndex - number from 0-31 indicating from which device you wish to get a channel's

data

unsigned long ChannelIndex - number indicating which channel's data you wish to get

double *pBuf - a pointer to a double precision IEEE floating point number which will receive the value read

)

ADC_GetScanV
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The easiest way, but often can’t achieve more than several hundred Hz, slower depending on options.

unsigned long ADC_GetScanV(- This simple function takes one scan of A/D data and converts it to

voltage. It also averages oversamples for each channel. The array must contain one entry per A/D

channel on the board, though only entries [start channel] through [end channel] are altered. On

boards with A/D that don't support ADC_SetConfig(), it scans all channels, without oversampling.

unsigned long DeviceIndex - number from 0-31 indicating from which device you wish to get a scan of

data

double *pBuf - a pointer to the first of an array of double precision IEEE floating point numbers which will

each receive the value read from one channel

)

ADC_GetScan
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Returns data in “counts”, which expose the “digital” nature of the conversion. Also slow, see above.

unsigned long ADC_GetScan(- This simple function takes one scan of A/D data. It also averages

oversamples for each channel. The array must contain one entry per A/D channel on the board,

though only entries [start channel] through [end channel] are altered. On boards with A/D that

don't support ADC_SetConfig(), it scans all channels, without oversampling.

unsigned long DeviceIndex - number from 0-31 indicating from which device you wish to get a scan of

data

unsigned short *pBuf - a pointer to the first of an array of W ORDs which will each receive the value from

one channel

)

16

ADC_GetConfig
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long ADC_GetConfig(

unsigned long DeviceIndex - number from 0-31 indicating from which device you wish to get the A/D

configuration

unsigned char *pConfigBuf - a pointer to the first of an array of bytes for configuration data

unsigned long *ConfigBufSize - a pointer to a variable holding the number of configuration bytes to read.

W ill be set to the number of configuration bytes read

)

ADC_SetConfig
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long ADC_SetConfig(

unsigned long DeviceIndex - number from 0-31 indicating to which device you wish to set the A/D

configuration

unsigned char *pConfigBuf - a pointer to the first of an array of config bytes

unsigned long *ConfigBufSize - a pointer to a variable holding the number of config bytes to write. W ill be

set to the number of config bytes written

)

Configuration bytes for analog input boards(the USB-AI16-16 family) are as follows:

[00h] … [0Fh] [10h] [11h] [12h] [13h] [14h]

Range

Code 0
…

Range

Code 15

Cal.

Code

Trigger &

Counter

Start & End

Channel
Oversample

Extended

Channel

A configuration of all zeroes is close to an "ordinary" use; you'll likely want to set timer or external trigger,

and start and end channels. The extended channel byte only applies to boards with more than 16

channels.

Range codes (config bytes 00h-0Fh) map to channels as follows:

Config Byte 00h 01h … 07h 08h … 0Eh 0Fh

16-Channel Boards

lower channel 0 1 … 7 8 … 14 15

upper channel 8 9 … F N/A, don't add 08

"64M" Boards (64-channel)

lower channels 0-3 4-7 … 28-31 32-35 … 56-59 60-63

upper channels 32-35 36-39 … 60-63 N/A, don't add 08

Other Boards (32-, 64-, 96-, or 128-channel)

lower channels 0-7 8-15 … 56-63 64-71 … 112-119 120-127

upper channels always differential in hardware, don't add 08

17

Range codes correspond to ranges as follows:

Range Code 00 01 02 03 04 05 06 07

Range 0-10V ±10V 0-5V ±5V 0-2V ±2V 0-1V ±1V

Add 08 to the range code for any "lower" channel(s) to pair them with "upper" channel(s) in differential

mode.

Calibration codes (config byte 10h) are as follows:

Cal. Code 00h 01h 03h 05h 07h

Effect
Acquire

Normal Data

Acquire

Cal. Unipolar

Ground

Acquire

Cal. Unipolar

Reference

Acquire

Cal. Bipolar

Ground

Acquire

Cal. Bipolar

Reference

Target 0V @ 0-10V
9.9339V

@ 0-10V
0V @ ±10V

9.8678V

@ ±10V

Trigger & counter bits (config byte 11h) are as follows:

Bit 7 6 5 4 3 2 1 0

Value Reserved, use 0
CTR0

EXT

Falling

Edge
Scan

External

Trigger

Timer

Trigger

• If CTR0 EXT is set, counter 0 is externally-triggered; otherwise, counter 0 is triggered by the onboard

10MHz clock.

• If Falling Edge is set, A/D is triggered by the falling edge of its trigger source; otherwise, A/D is triggered

by the rising edge of its trigger source.

• If Scan is set, a single A/D trigger will acquire all channels from start to end, oversampling if so

configured, at maximum speed. Otherwise, a single A/D trigger will cause a single acquisition, "walking"

through oversamples and channels.

• If External Trigger is set, the external A/D trigger pin is an A/D trigger source. Otherwise, it's ignored.

• If Timer Trigger is set, counter 2 is an A/D trigger source. Otherwise, it's ignored.

Start & end channel (config byte 12h) for 16-channel analog input boards are the start channel (0-F) in bits

0-3, and the end channel (0-F) in bits 4-7. For boards with more than 16 channels, the start & end channel

are split among this config byte and the extended channel (config byte 14h), as follows:

Bits 4-7 0-3

config byte 12h End Channel bits 0-3 Start Channel bits 0-3

config byte 14h End Channel bits 4-7 Start Channel bits 4-7

For example, to start at 0 and end at 63 (3Fh), set config byte 12h to F0h and config byte 14h to 30h. To

start at 7 and end at 107 (6Bh), set config byte 12h to B7h and config byte 14h to 60h. In any case, if the

end channel is less than the start channel, then the board's behavior is unspecified.

Oversample (config byte 13h) is a number indicating how many extra samples should be acquired from

each channel before moving on to the next. In a noisy environment, the samples can be averaged

together by software to effectively reduce noise.

Extended channel (config byte 14h) is involved with the start & end channel, above.

18

ADC_RangeAll
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long ADC_RangeAll(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to set A/D ranges

unsigned char *pRangeCodes - a pointer to the first of an array of 16 bytes, each of which contains a

range code. This does not include single-ended/differential configuration; to configure

single-ended/differential on a per-channel basis, use ADC_Range1() or ADC_SetConfig()

unsigned long bDifferential - boolean value. Use FALSE for 16-channel single-ended mode, use TRUE for

8-channel differential mode

)

ADC_Range1
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long ADC_Range1(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to set an A/D channel

range

unsigned long ADChannel - number from 0-15 indicating an A/D channel on the device

unsigned char RangeCode - a byte range code. See above for details

unsigned long bDifferential - boolean value. For channels 0-7, use FALSE for single-ended mode, use

TRUE to pair it with the respective channel 8-15 in differential mode. For channels 8-15, use

FALSE

)

ADC_SetScanLimits
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long ADC_SetScanLimits(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to set A/D scan limits

unsigned long StartChannel - the number of the first channel you want in a scan

unsigned long EndChannel - the number of the last channel you want in a scan

)

19

ADC_ADMode
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The USB-AI12-16E does not support calibration, and will use CalMode 00

unsigned long ADC_ADMode(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to set overall A/D

parameters

unsigned char TriggerMode - byte indicating which A/D trigger source to use, see the manual for details.

Also sets the clock source for counter 0

unsigned char CalMode - byte indicating which A/D source to use - 00 hex for actual inputs, 01 hex for

calibration unipolar ground reference, 03 hex for calibration unipolar high reference, 05 hex for

calibration bipolar ground reference, 07 hex for calibration bipolar high reference. Other values

cause the call to fail, returning "ERROR_INVALID_PARAMETER"(equal to 87 decimal).

)

ADC_SetOversample
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Oversample can make your data quieter, but slows down the acquisition and adds inter-channel delay .

unsigned long ADC_SetOversample(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to set the A/D

oversample

unsigned char Oversample - the number of extra samples to take from each channel in a scan

)

ADC_SetCal
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-AI16-16A and USB-AI12-16A only.

unsigned long ADC_SetCal(

unsigned long DeviceIndex - number from 0-31 indicating to which device you wish to upload a calibration

file

char *CalFileName - either the file name of a calibration file, or a command string. A file name can include

the full path, or be relative to the current directory. A command string of ":AUTO:" causes this

function to generate a calibration file from the calibration references and upload that. A command

string of ":NONE:" causes this function to generate an "uncalibrated" calibration file and upload

that

)

20

ADC_QueryCal
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long ADC_QueryCal(- This function returns "ERROR_SUCCESS"(equal to 0) if the indicated

device supports A/D calibration, or "ERROR_NOT_SUPPORTED"(equal to 50 decimal) if it has

A/D but doesn't support calibration

unsigned long DeviceIndex - number from 0-31 indicating which device's ability you wish to query

)

ADC_Initialize
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-AI16-16A and USB-AI12-16A only.

unsigned long ADC_Initialize(

unsigned long DeviceIndex - number from 0-31 indicating which device you wish to set A/D configuration

on and upload a calibration file to

unsigned char *pConfigBuf - a pointer to the first of an array of configuration bytes

unsigned long *ConfigBufSize - a pointer to a variable holding the number of configuration bytes to write.

W ill be set to the number of configuration bytes written

char *CalFileName - the file name of a calibration file, or a command string. See ADC_SetCal() for details.

)

ADC_BulkAcquire
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long ADC_BulkAcquire(

unsigned long DeviceIndex - number from 0-31 indicating from which device you wish to acquire bulk data

unsigned long BufSize - the size, in bytes, of the buffer to receive the data

void *pBuf - a pointer to the beginning of the buffer to receive the data

)

This function will return immediately. A return value of “ERROR_SUCCESS”(equal to 0) indicates that bulk

data is being acquired in the background, and the buffer should not be deallocated or moved. Use

ADC_BulkPoll() to query this background operation.

ADC_BulkPoll
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long ADC_BulkPoll(

unsigned long DeviceIndex - number from 0-31 indicating from which device you wish to query A/D status

unsigned long *BytesLeft - a pointer to a variable which will be set to the number of bytes of A/D data

remaining to be taken

)

Note that any data that has been taken is available in the buffer, starting from the beginning. For example,

if ADC_BulkAcquire() was called to take 1024 MB of data, and ADC_BulkPoll() indicates 768 MB is left to

be taken, then the first 256 MB of data is available.

21

ADC_BulkContinuousCallbackStart
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long ADC_BulkContinuousCallbackStart(

unsigned long DeviceIndex - number from 0-31 indicating which device you wish to start

unsigned long BufSize - number of bytes (a multiple of 512) for each buffer in the software FIFO

unsigned long BaseBufCount - number of buffers in the software FIFO, for example 64. Minimum 2

unsigned long Context - any value, will be passed to the callback

void *pCallback - pointer to an ADContCallback() function to receive buffers

)

Starts a continuous bulk acquire process. A worker thread will acquire data, however the board is

configured, a buffer at a time; another worker thread will pass a buffer at a time to the callback. The clock

should be stopped while calling this function, like so:

Hz = 0;
CTR_StartOutputFreq(DeviceIndex, 0, &Hz);
ADC_SetConfig(DeviceIndex, &Config[0], ConfigSize);
ADC_BulkContinuousCallbackStart(DeviceIndex, 16*1024, 32, 0, &ADCallback);
Hz = 30000;
CTR_StartOutputFreq(DeviceIndex, 0, &Hz);

void ADContCallback(

unsigned short *pBuf - pointer to the first of an array of W ORD samples

unsigned long BufSize - size, in bytes, of the array passed in pBuf; can be zero

unsigned long Flags - a bitmask of flags, see table

unsigned long Context - a copy of the Context parameter to ADC_BulkContinuousCallbackStart()

)

This is a placeholder for the callback function passed to ADC_BulkContinuousCallbackStart(); the driver

will fill in its parameters as indicated. Note that it will be called from an alternate thread context. Flags are

as follows:

Bit Mask Meaning

0 Flags & 1 Obsolete. (Previously, this was set on the first buffer of a terminal count. The current version doesn't use terminal counts.)

1 Flags & 2
End of stream; this is the last buffer. Typically one last zero-size buffer will be passed,

in order to set this flag.

2 Flags & 4

The BaseBufCount was too small; this buffer was added to the FIFO, which may

interrupt the data stream afterward. At sampling rates of a few Hz, a BaseBufCount of 2

is plenty. On a fast computer, a BaseBufCount of 64 can handle up to 500kHz sampling

rate. High sampling rates on a slow computer may require higher BaseBufCount values.

ADC_BulkContinuousEnd
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long ADC_BulkContinuousEnd(

unsigned long DeviceIndex - number from 0-31 indicating which device you wish to end continuous

acquisition on

unsigned long *pIOStatus - pointer to a variable to receive I/O status of the continuous process. If you

don't care about the I/O status, pass a null pointer

)

22

DIGITAL TO ANALOG

DACDirect
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long DACDirect(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to set a DAC value

unsigned short Channel - number from 0-7 indicating which DAC you wish to set

unsigned short Value - number from 000h-FFFh indicating the count value to which you wish to set the

DAC; 000h indicates the lowest DAC level, FFFh indicates the highest DAC level, other values are

proportional

)

DACMultiDirect
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

The most efficient method to output voltages

unsigned long DACMultiDirect(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to set a DAC value

unsigned short *pDACData - a pointer to the first of an array of W ORDs, consisting of channel/value pairs;

channels are from 0-7, values are from 000h-FFFh, as for DACDirect()

unsigned long DACDataCount - number indicating how many channel/value pairs are in the array

referenced by pDACData

)

DACSetBoardRange
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long DACSetBoardRange(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to set the DAC range

unsigned long RangeCode - the range code to set for the board; see the manual for your device's range

codes

)

DACOutputProcess
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

unsigned long DACOutputProcess(- This function begins a one-shot DAC output process. Rather than

streaming DAC data continuously, it opens a connection, sends a single block of data, then

closes. The DAC data will then be clocked out based on the EOD bit, see DACOutputFrameRaw()

below for details

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to begin DAC

streaming

23

double *pClockHz - a pointer to a double precision IEEE floating point number containing the desired

output clock frequency. This value is set by the driver to the actual frequency at which DAC data

will be clocked out, as limited by the device’s capabilities.

unsigned long NumSamples - the total number of samples to output. Notably, this is not a number of

"points"

unsigned short * SampleData - a pointer to the first of an array of W ORDs; each DAC value is stored in a

W ORD, so it should contain (samples to output) W ORDs. The features are controlled by the

upper bits in the data array; for details on this format, see DACOutputFrameRaw() below

)

DACOutputOpen
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

unsigned long DACOutputOpen(- This function begins a DAC streaming process. The stream is divided

into “points”; each point contains data for one or more DACs, and during the streaming process

the onboard counter/timer clocks out points at a steady rate.

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to begin DAC

streaming

double *pClockHz - a pointer to a double precision IEEE floating point number containing the desired

output clock frequency. This value is set by the driver to the actual frequency at which DAC data

will be clocked out, as limited by the device’s capabilities.

)

DACOutputOpenNoClear
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

unsigned long DACOutputOpenNoClear(- This function is now equivalent to DACOutputOpen(). The

"clear" is no longer useful.

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to begin DAC

streaming

double *pClockHz - a pointer to a double precision IEEE floating point number containing the desired

output clock frequency. This value is set by the driver to the actual frequency at which DAC data

will be clocked out, as limited by the device’s capabilities.

)

DACOutputClose
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-DA12-8A only. Deprecated: DACOutputCloseNoEnd is preferred for new code.

unsigned long DACOutputClose(- This function ends and closes a DAC streaming process.

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to end DAC streaming

unsigned long bW ait - reserved for future expansion; currently, this function always waits for the streaming

process to complete before returning to the caller

)

24

DACOutputCloseNoEnd
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

unsigned long DACOutputCloseNoEnd(- This function closes a DAC streaming process without ending

it. This is most useful when you've set LOOP or EOM via DACOutputFrameRaw().

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to end DAC streaming

unsigned long bW ait - reserved for future expansion; currently, this function always waits for the streaming

process to complete before returning to the caller

)

DACOutputSetCount
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

unsigned long DACOutputSetCount(- This function sets the number of DACs involved in each DAC

streaming point henceforth. W hen the driver connects to the device, this is initialized to 5 (for

ILDA use). You can set this freely between calls to DACOutputFrame() and/or

DACOutputFrameRaw() if you wish.

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to set the number of

DACs in future points

unsigned long NewCount - number from 1-8 indicating the number of DACs in future points

)

DACOutputFrame
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-DA12-8A only. Deprecated: DACOutputFrameRaw is preferred for new code.

unsigned long DACOutputFrame(- This function writes a group of points(a “frame”) into the DAC stream.

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to stream a frame of

DAC points

unsigned long FramePoints - the number of points in the frame

unsigned short * FrameData - a pointer to the first of an array of W ORDs; each DAC value is stored in a

W ORD, so it should contain (DAC count) × (points in the frame) W ORDs

)

All points in a frame control the same number of DACs; if, for example, you wish to output one point with

all 8 DACs, followed by 99 points with only 2 DACs, set the DAC count to 8, output a frame of just the first

point, then set the DAC count to 2, and output a frame of the next 99 points. If the driver’s internal buffer is

full, the function will return “ERROR_NOT_READY” (equal to 21 decimal); try again in a moment, as the

driver’s buffer should drain some as soon as there’s room in the larger hardware buffer and available time

on the USB bus.

25

DACOutputFrameRaw
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

unsigned long DACOutputFrameRaw(- This function is similar to DACOutputFrame(), except the

features are controlled by the upper bits in the data array. This provides the greatest flexibility, at

the cost of complexity.

unsigned long DeviceIndex - same as for DACOutputFrame()

unsigned long FramePoints - same as for DACOutputFrame()

unsigned short * FrameData - same as for DACOutputFrame(); notably, the DAC count determines the

number of samples, even though you can place EOD bits(see below) as you wish

)

The meanings of the bits are as follows:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Meaning EOM EOF EOD LOOP DAC Value

• If EOM("End Of Movie") is set, the board will stop the waveform after outputting the sample. (Unless

LOOP is also set, see below.)

• If EOF("End Of Frame") is set, the frame pin will be pulsed. This can be used for other things via

DACOutputFrameRaw(), but is automatically set on the last sample of each frame by DACOutputFrame().

• If EOD("End Of DACs") is set, the next sample will go to the first DAC; otherwise, it will go to the next

DAC in series. (If this sample goes to the last DAC, this bit isn't needed, but should be set anyway for

future expansion.) Going to the first DAC also ends the point, which is significant because each tick clocks

out a point.

• If LOOP is set, the board will "jump" to the beginning of its buffer after outputting the sample. (Unless

EOM is also set, see below.) This can be used to load a "repeatable" waveform, like a sine wave, and then

loop it without further attention from the host computer. Indeed, with external power, you can disconnect

the USB cable without interrupting the loop.

Note that the EOM and LOOP bits are for mutually exclusive uses. Setting them both issues extended

commands instead of treating the sample normally. No extended commands are yet defined, but the

feature is reserved for future expansion.

DACOutputStart
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

unsigned long DACOutputStart(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to start DAC

streaming

)

Normally, DAC streaming will be automatically started by streaming 1¼ SRAMs worth of data (160K bytes,

i.e. 81920 samples). It's only if you're using a smaller amount of data that you'd need to "manually" start

DAC streaming with this function.

Note that before starting DAC output you must send the lesser of one SRAM worth of data (128K bytes,

i.e. 65536 samples) or your entire waveform, due to the use of bank-switched single-ported memory.

26

DACOutputSetInterlock
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

unsigned long DACOutputSetInterlock(

unsigned long DeviceIndex - number from 0-31 indicating on which device you wish to enable or disable

interlock

unsigned long bInterlock - TRUE to enable interlock, FALSE to disable interlock. W hile interlock is

enabled, DAC streaming is paused unless the interlock pin is grounded, usually through the cable.

The interlock pin is pin 12 of the DB25 M connector (or, on the OEM version, pin 7 of the

connector named J4)

)

27

GENERAL FUNCTIONS

GetDeviceSerialNumber
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long GetDeviceSerialNumber(

unsigned long DeviceIndex - number from 0-31 of the device whose serial number you wish to read.

unsigned __int64 *pSerialNumber - pointer to an 8-byte (64-bit) value to fill with the serial number.

)

CustomEEPROMWrite
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long CustomEEPROMWrite(- This function writes to the custom EEPROM area, so you can

store data there for your own use.

unsigned long DeviceIndex - number from 0-31 of the device to which you wish to write custom EEPROM

data.

unsigned long StartAddress - number from 0x000 to 0x1FF of the first custom EEPROM byte you wish to

write to.

unsigned long DataSize - number of custom EEPROM bytes to write. The last custom EEPROM byte is

0x1FF, so StartAddress plus DataSize can't be greater than 0x200.

void *Data - pointer to the start of a block of bytes to write to the custom EEPROM area.

)

CustomEEPROMRead
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long CustomEEPROMRead(- This function reads data written by CustomEEPROMW rite.

unsigned long DeviceIndex - number from 0-31 of the device from which you wish to read custom

EEPROM data.

unsigned long StartAddress - number from 0x000 to 0x1FF of the first custom EEPROM byte you wish to

read from.

unsigned long *DataSize - pointer to a variable holding the number of custom EEPROM bytes to read. The

last custom EEPROM byte is 0x1FF, so StartAddress plus *DataSize can't be greater than 0x200.

void *Data - pointer to the start of a block of bytes to fill with data read from the custom EEPROM area.

)

28

AIOUSB_SetStreamingBlockSize
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long AIOUSB_SetStreamingBlockSize(

unsigned long DeviceIndex - number from 0-31 indicating which device's streaming block size you wish to

set.

unsigned long BlockSize - the new streaming block size you wish to set. For DIO streaming, this will get

rounded up to the next multiple of 256. For A/D streaming, this will get rounded up to the next

multiple of 512.

)

AIOUSB_ClearFIFO
APPLIES TO

RS-232

-422 / -485

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

unsigned long AIOUSB_ClearFIFO(

unsigned long DeviceIndex - number from 0-31 of the device you wish to clear the streaming FIFO on.

unsigned long Method - 0 to simply clear the FIFO right away, others per the table below

)

Clear FIFO Method Codes

Code

(decimal) Effect

0 Clear FIFO as soon as command received (and disable auto-clear)

1 Enable auto-clear FIFO every falling edge of DIO port D bit 1 (on digital boards, analog

boards treat as 0)

5 As 0, but also abort stream

29

.NET

APPLIES TO

C# VB.NET Visual C CLI and all other .net languages

.NET languages attempt to lockdown the programing environment to prevent certain types of security

flaws from being introduced. This is called “Managed” programming, and really refers to the fact that these

languages are very high-level scripting languages that perform much of the low-level programming chores

for the developer. This can be a good thing (more secure, easier) but it can also be a drawback (larger

code that executes slowly, difficulty integrating with hardware, quirks when integrating with other

languages).

This “managed code” environment prevents C# code from calling directly into certain types of drivers and

DLLs, like the DLLs used to control data acquisition hardware in other languages, without violating the

“managed” wrapper. To avoid this violation, we have provided a C# language wrapper for the driver DLLs.

The USB driver API, AIOUSB.DLL, is wrapped up in AIOUSBNet.DLL. This DLL is simply a little piece of

code written in C# that marshals the parameters used into forms .NET is more comfortable with calling as

“managed”. The full source is provided under your installation path’s /win32 directory, so you can take a

look at it if you’d like.

This AIOUSBNet.DLL replaces certain file types used in other languages, things like “header files” “lib

files” “interface files” etcetera. This type of .NET DLL is often referred to as a “Class Library” – every

function from our AIOUSB.DLL is provided in the form of a C# .NET compatible “Class”.

The only provided support at this time is for 32-bit systems. So, the first tip in this guide:

1) Make sure your Application target development system is “x86", not “any”

 Please note: some versions of Visual Studio may not have a convenient way to set the x86

configuration (they are coded always to “any”). Here’s an article on how to modify your project file

in those cases: http://social.msdn.microsoft.com/Forums/nl-BE/vblanguage/thread/d4fa83dc-

eed1-4ead-96a1-78bbd9ba6d3a

These samples were built using Visual Studio 2010, but can be converted to compile in older versions:

2) Create a brand new project in your version, then copy and paste the source code into that new

project to build our VS2010 code in your older version.

3) If you’re rebuilding one of our Class Libraries (AIOUSBNet.DLL for example), make sure you

select a Class Library Project when you create your new project to get all the settings correct.

4) The Class Library DLL can be made much more convenient to use if you install it into the GAC

(Global Assembly Cache). This process is usually difficult, but we’ve made it easy – Check out the

sub-project in the AIOUSBNet.DLL solution which will create an installer .MSI file for you. By

simply building this project and running the resultant .MSI file, the dll and settings will be properly

installed into the GAC.

As always, check for the latest versions of our code at our website, and feel free to chat, email, or call for

technical support. W e’re here to help!

30

	INTRODUCTION
	DRIVER REFERENCE
	DIGITAL INPUT / OUTPUT
	DIO_Write1
	DIO_ReadAll
	DIO_Read8
	DIO_Read1
	DIO_StreamOpen
	DIO_StreamClose
	DIO_StreamSetClocks
	DIO_StreamFrame

	COUNTER / TIMERS
	CTR_8254Mode
	CTR_8254Load
	CTR_8254ModeLoad
	CTR_8254ReadModeLoad
	CTR_8254Read
	CTR_8254ReadAll
	CTR_8254ReadStatus
	CTR_StartOutputFreq
	CTR_8254SelectGate
	CTR_8254ReadLatched

	ANALOG TO DIGITAL
	ADC_GetChannelV
	ADC_GetScanV
	ADC_GetScan
	ADC_GetConfig
	ADC_SetConfig
	ADC_RangeAll
	ADC_Range1
	ADC_SetScanLimits
	ADC_ADMode
	ADC_SetOversample
	ADC_SetCal
	ADC_QueryCal
	ADC_Initialize
	ADC_BulkAcquire
	ADC_BulkPoll
	ADC_BulkContinuousCallbackStart
	ADC_BulkContinuousEnd

	DIGITAL TO ANALOG
	DACDirect
	DACMultiDirect
	DACSetBoardRange
	DACOutputProcess
	DACOutputOpen
	DACOutputOpenNoClear
	DACOutputClose
	DACOutputCloseNoEnd
	DACOutputSetCount
	DACOutputFrame
	DACOutputFrameRaw
	DACOutputStart
	DACOutputSetInterlock

	GENERAL FUNCTIONS
	GetDeviceSerialNumber
	CustomEEPROMWrite
	CustomEEPROMRead
	AIOUSB_SetStreamingBlockSize
	AIOUSB_ClearFIFO

	.NET

