· Sets of 32-bit counters, input registers, output registers, comparators and octal Status registers for each axis Digital filtering of the input quadrature clocks DB1 6 for noise immumity. · Pin selectable 3-state Hex / Octal bus DB2 7 3V to 5.5V operating voltage range DB3 8 · Available in four different configurations identified by the following suffixes: DB4 9 **DH** = Dual-axis with pin selectable Hex/Octal IO Bus DB5 10 DO = Dual-axis Octal IO Bus

SH = Single-axis pin selectable Hex/Octal IO Bus SO = Single axis Octal IO Bus LS7766DH-TS; LS7766DO, LS7766DO-S, LS7766DO-TS; LS7766SO, LS7766SO-S, LS7766SO-TS; LS7766SH-TS

P/N = DIP; P/N-S = SOIC; P/N-TS = TSSOP

· Direct interface with Incremental Encoders

free-run, non-recycle, modulo-n and range limit Programmable IOs for Index and Marker Flags

· Separate mode-control registers for each axis

Read/write registers for count and I/O modes. Count modes.

include: non-guadrature (Up/Down), guadrature (x1, x2, x4.)

40MHz count frequency at 5V; 20MHz count frequency at 3V

GENERAL DESCRIPTION:

FEATURES:

The LS7766 consists of two identical modules of 32-bit programmable up/down counters (CNTR) with direct interface to incremental encoders. The modules can be configured to operate as guadrature-clock counters or non-quadrature up/down counters. In both quadrature and non-quadrature modes, the modules can be further configured into free-running, non-recycle, modulo-n and range-limit count modes. The mode configuration is made via two octal read/write addressable mode control registers, MCR0 and MCR1. Data can be written into a 32-bit input data register (IDR), organized in addressable Word segments using the hex IO bus or in byte segments using the octal IO Bus. The IDR can be used to store target encoder positions and compared with the CNTR for generating marker flags when the CNTR reaches the target value. A 32-bit digital comparator is included for monitoring the equality of the CNTR to the IDR. Snapshots of the CNTR value can be stored in a read-addressable 32-bit output data register (ODR). The ODR can be read in Word segments or byte segments in accordance with the selected bus width. Data transfers among the registers and various register reset functions are performed by means of a write-addressable octal transfer control register (TCR). A read-addressable octal status register (STR), stores the count related status information such as CNTR overflow, underflow, count direction. etc.

RS2 48 VDD 1 <u>S</u> RS1 2 РСКО 47 PCKI RS0 46 3 RD/ 45 NC 4 DB0 WR/ 5 44 43 CS/ NC 42 x1B 41 x1A 40 x1INDX/ 39 DB6 11 x1FLGa 38 DB7 12 37 x1FLGb x1CKO DB8 36 13 DB9 Vss 35 14 DB10 15 34 1016/ DB11 x0/_x1 16 33 17 DB12 32 x0CKO **DB13** 18 31 x0FLGb 19 **DB14** 30 x0FLGa NC **DB15** 20 29 NC x0INDX/ 21 28 x0A NC 22 27 x0B NC 23 26

Pin Assignment - Top View

Vss

24

LSI Computer Systems, Inc. 1235 Walt Whitman Road, Melville, NY 11747 (631) 271-0400 FAX (631) 271-0405 October 2007

32-BIT SINGLE- AXIS/DUAL-AXIS QUADRATURE COUNTER

LSI/CSI **LS7766**

NC 25

Pin Assignment - Top View

REGISTER DESCRIPTION:

Following is a list of the hardware registers for the single-axis device. For the dual axis device, these registers are duplicated for the second axis.

IDR

The IDR is a 32-bit data register directly addressable for write. In the octal bus-configuration, the input data is written in byte segments of byte0 (IDR0), byte1 (IDR1), byte2 (IDR2) and byte3 (IDR3). In the hex busconfiguration the data is written in word segments of word0 (IDR1:IDR0) and word1 (IDR3:IDR20).

B	31			B0				
IDR:	IDR3	IDR2	IDR1	IDR0				
B	B7B0 B7							
byte3 byte2 byte1 byte0								
	wor	d1	WO	rd0				

The IDR serves as the input portal for the counter (CNTR) since the CNTR is not directly addressable for either read or write. In order to preset the CNTR to any desired value the data is first written into the IDR and then transferred to the CNTR.

In **mod-n** and **range-limit** count modes the IDR serves as the repository for the division factor n and the count range-limit, respectively. The IDR can also be used to hold a target position data for comparing with the running CNTR. A compare equality flag is generated at IDR = CNTR to signal the event of arriving at the target.

CNTR:

The CNTR is a 32-bit up/down counter which counts the up/down pulses resulting from the quadrature clocks applied at A and B inputs or alternatively, in nonquadrature mode, pulses applied at the A input. The CNTR is not directly accessible for read or write; instead it can be preloaded with data from the IDR or it can port its own data out to the ODR which in turn can be accessed by read operation. In both quadrature and nonquadrature modes, the CNTR can be further configured into either free-running or single-cycle or mod-n or range-limit mode. In quadrature mode, the count resolution is programmable to be x1 or x2 or x4 of the A quad B cycles.

ODR:

The ODR is a 32-bit data register directly addressable for read. In the octal bus-configuration, the output data is read in byte segments of byte0 (ODR0), byte1 (ODR1), byte2 (ODR2), and byte3 (ODR3). In the hex busconfiguration the data is read in word segments of word0 (ODR1:ODR0) and word1 (ODR3:ODR2).

B	31			B0			
		02		ODR0			
B7B0 B7B0 B7B0 B7B0 B7B0							
byte3 byte2 byte1 byte0							
	wor	d1	WC	ord0			

STR:

The STR is an 8-bit status register indicating count related status.

An individual STR bit is set to 1 when the bit related event has taken place. The STR is cleared to 0 at power-up. The STR can also be cleared through the control register TCR with the exception of bit_1(U/D) and bit3_(CEN). These two STR bits always indicate the instantaneous status of the count_direction and count_enable assertion/de-assertion. The STR bits are described below:

- B7 (CY): Carry; set by CNTR overflow
- B6 (BW): Borrow; set by CNTR underflow
- B5 (CMP): Set when CNTR = PR
- B4 (IDX): Set when INDX input is at active level
- B3 (CEN): Set when counting is enabled, reset when counting is disabled
- B2 (0): Always 0
- B1 (U/D): Set when counting up, reset when counting down
- B0 (S): Sign of count value; set when negative, reset when positive

TCR:

The TCR is a write only register, which when written into, generates transient signals to perform load and reset operations as described below:

TCR: B7 B6 B5 B4 B3 B2 B1	B0	
---------------------------	----	--

- B0 = 0: Nop
 - = 1: Reset CNTR to 0. (Should not be combined with load_CNTR operation).
- B1 = 0: Nop
 - = 1: Load CNTR from IDR. Affects all 32 bits. (Should not be combined with reset_CNTR operation)
- B2 = 0: Nop
- = 1: Load ODR from CNTR. Affects all 32 bits.
- B3 = 0: Nop
 - = 1: Reset STR. Affects status bits for carry, borrow, compare and index. Status bits corresponding to count_enable, count direction and sign are not affected
- B4 = 0: Nop.
- 1: Master reset. Resets MCR0, MCR1, IDR, ODR, STR
- B5 = 0: Nop
 - 1: Set sign bit (STR bit0)
- B6 = 0: Nop
 - 1: Reset sign bit (STR bit0)
- B7 = x: Not used.

MCR0 : The MCR0 is an 8-bit read/write register which configures the counting modes and the index input functionality. Upon power-up, the MCR0 is cleared to zero.

MCR0: B7 B6 B5 B4 B3 B2 B1 B0
 B1B0 = 00: Non-quadrature count mode (A = clock, B = direction). = 01: x1 quadrature count mode (one count per quadrature cycle). = 10: x2 quadrature count mode (two counts per quadrature cycle). = 11: x4 quadrature count mode (four counts per quadrature cycle). B3B2 = 00: Free-running count mode. = 01: Single-cycle count mode (CNTR disabled with carry and borrow, re-enabled with reset or load) = 10: Range-limit count mode (up and down count ranges are limited between IDR and zero, respectively. Counting freezes at these limits but resumes when the direction is reversed) = 11: Modulo-n count mode (input count clock frequency is divided by a factor of [n+1], where n = IDR. In up direction, the CNTR is cleared to 0 at CNTR = IDR and up count continues. In down direction, the CNTR is preset to the value of IDR at CNTR = 0 and down count continues. A mod-n rollover marker pulse is generated at each limit at the FLGa output). B5B4 = 00: Disable INDX/ input. = 01: Configure INDX/ as the load_CNTR input (transfers IDR to CNTR). = 10: Configure INDX/ as the load_ODR input (transfers CNTR to 0). = 11: Configure INDX/ as the load_ODR input (transfers CNTR to 0). = 11: Synchronous index. = 11: Synchronous index. = 11: Synchronous index. = 11: Input filter clock (PCK) division factor = 1. Filter clock frequency = frck. = 11: Input filter clock division factor = 2. Filter clock frequency = frck/2.
MCR1: The MCR1 is an 8-bit read/write register which configures the FLGa and FLGb output functionality. In addition, the MCR1 can be used to enable/disable counting.Upon power-up, the MCR1 is cleared to zero:
MCR1: B7 B6 B5 B4 B3 B2 B1 B0
 B0 = 1: Enable Carry on FLGa (flags CNTR overflow; latched or unlatched logic low on carry). B1 = 1: Enable Borrow on FLGa (flags CNTR underflow, latched or unlatched logic low on borrow). B2 = 1: Enable Compare on FLGa (In free-running count mode a latched or unlatched logic low is generated in both up and down count directions at CNTR = IDR. In contrast, in range-limit and mod-n count modes a latched or unlatched low is generated at CNTR = IDR in the up-count direction only. B3 = 1: Enable index on FLGa (flags index, latched or unlatched logic low when INDX input is at active level) B5B4 = 00: FLGb disabled (fixed high) = 01: FLGb = Sign, high for negative signifying CNTR underflow, low for positive.
 = 10: FLGb = Up/Down count direction, high in count-up, low in count-down. B6 = 0: Enable counting.
 = 1: Disable counting. B7 = 0: FLGa is latched. = 1: FLGa is non-latched and instantaneous.
NOTE: Carry, Borrow, Compare and Index can all be simultaneously enabled on FLGa.

I/O PINS: The following is a description of the input/out pins.

RS0, RS1, RS2

Inputs. These three inputs select the hardware registers for read/write access according to Table 1 and Table 2. Table 1 applies to Octal bus configuration. Table 2 applies to Hex bus configuration.

TABLE 1

						DATABUS SELECTED REGISTER
CS/	RS2	RS1	RS0	RD/	WR/	REGISTER MAP OPERATION
1	Х	Х	Х	х	х	none none none
0	0	0	0	0	1	MCR0 DBL READ
0	0	0	1	0	1	MCR1 DBL READ
0	0	1	0	0	1	ODR0 DBL READ
0	0	1	1	0	1	ODR1 DBL READ
0	1	0	0	0	1	ODR2 DBL READ
0	1	0	1	0	1	ODR3 DBL READ
0	1	1	0	0	1	STR DBL READ
0	0	0	0	1	0	MCR0 DBL WRITE
0	0	0	1	1	0	MCR1 DBL WRITE
0	0	1	0	1	0	IDR0 DBL WRITE
0	0	1	1	1	0	IDR1 DBL WRITE
0	1	0	0	1	0	IDR2 DBL WRITE
0	1	0	1	1	0	IDR3 DBL WRITE
0	1	1	0	1	0	TCR DBL WRITE

TABLE 2

							DATABUS REGISTER	
CS/	RS2	RS1	RS0	RD/	WR/	REGISTER	MAP	OPERATION
1	х	Х	х	х	х	none	none	none
0	0	0	0	0	1	[MCR1:MCR0]	[DBH:DBL]	READ
0	0	1	0	0	1	[ODR1:ODR0]	[DBH:DBL]	READ
0	1	0	0	0	1	[ODR3:ODR2]	[DBH:DBL]	READ
0	1	1	0	0	1	[STR]	[DBL]	READ
0	0	0	0	1	0	[MCR1:MCR0]	[DBH:DBL]	WRITE
0	0	1	0	1	0	[IDR1:IDR0]	[DBH:DBL]	WRITE
0	1	0	0	1	0	[IDR3:IDR2]	[DBH:DBL]	WRITE
0	1	1	0	1	0	[TCR]	[DBL]	WRITE

Note 1. x indicates don't care case.

Note 2. DBL stands for DB <7:0> ; DBH stands for DB <15:8>.

 $x0/_x1$ Input. The x0/_x1 input selects between axis-0 and axis-1 for Read and Write operations. A low at this input selects axis-0 while a high selects axis-1.

RD/ Input. A low on RD/ input accesses an addressed register(s) for read and places the data on the databus, DB<15:0> in accordance with Table 1 and Table 2.

CS/ Input. A low on the CS/ input enables the chip for read or write operation. When the CS/ input is high, read and write operations are disabled and the databus, DB<15:0> is placed in a high impedance state.

WR/ Input. A low pulse on the WR/ input writes the data on the databus, DB<15:0> into the addressed register according to Table 1 and Table 2. The write operation is completed at the trailing edge of the WR/ pulse.

PCKI, PCKO. Input, Output. A clock applied at PCKI input is used for validating the logic states of the A and B quadrature clocks and the INDX/ input. Alternatively, a crystal oscillator connected between PCKI and PCKO can be used to generate the filter clock.

The PCK input frequency, fPCK is divided down by a factor of 1 or 2 according to bit7 of MCR0. The resultant clock is used to sample the logic levels of the A, the B and the INDX inputs. If a logic level at any of these inputs remains stable for a minimum of two filter clock periods, it is validated as a correct logic state.

The PCKI input is common to both axes, but the filter clock frequency for any axis is set by its associated MCR0 register.

In non-quadrature mode, no filter clock is used and the PCKI input should be connected to either VDD or GND.

x0A, x0B Inputs. These are the A and B count inputs in axis-0. These inputs can be configured to function either in quadrature mode or in non-quadrature mode. The configuration is made through MCR0. In quadrature mode, A and B clocks are 90 degrees out of phase such as the output from an Incremental Encoder. When A leads B in phase, the CNTR counts up and when B leads A in phase, the CNTR counts down.

In non-quadrature mode, A serves as the count input while B controls the count direction. When B is **high**, positive transitions at the A input causes the CNTR to count **up**. Conversely, when B is **low**, the positive transition at the A input causes the CNTR to count **down**.

In quadrature mode, A and B inputs are sampled by an internal filter clock generated from the PCKI input. In non-quadrature mode, A and B inputs are not sampled and the count clocks are applied to the CNTR, bypassing the filter circuit.

x1A , x1B:

These are the A and B inputs corresponding to axis-1, . Functionally, they are identical with the A and B inputs of axis-0.

x0INDX/ Input. The INDX/ input in axis-0. The INDX/ input can be configured to function as load_CNTR or reset_CNTR or load_ODR input via MCR0. In quadrature mode the INDX/ input can be configured to operate in either synchronous or asynchronous mode. In the synchronous mode the INDX/ input is sampled with the same filter clock used for sampling the A and the B inputs and must satisfy the phase relationship with A and B in which INDX/ is at the active level during a minimum of a quarter cycle of both A and B high or both A and B low. The active level of the INDX/ input is logic low.

In non-quadrature mode the INDX/ input is unconditionally set to the asynchronous mode. In the asynchronous mode the INDX/ input is not sampled and can be applied in any phase relationship with respect to the A and B inputs.

The INDX/ input can be either enabled or disabled in both quadrature and non-quadrature modes.

x1INDX/. The INDX/ input corresponding to axes-1. Functionally, it is identical with the INDX/ input of axis-0.

IO16/ Input. When low, hex databus configuration is invoked in accordance with Table 2. When high, octal databus configuration is invoked in accordance with Table 1. This input has an internal pull-up.

x0FLGa Output. The FLGa output in axis-0. The FLGa output is configured by MCR1 register to function as Carry and/or Borrow and/or Compare and/or Index flag. A Carry flag is generated when the CNTR overflows, a Borrow flag is generated when the CNTR underflows, a Compare flag is generated by the condition, CNTR = IDR and Index flag is generated when Index input is at active level. The FLGa output can be configured to produce outputs in either latched mode or instantaneous mode. In the latched mode when the selected event of Carry or Borrow or Compare or index has taken place. FLGa switches low and remains low until the status register, STR is cleared. In the instantaneous mode, a negative pulse is generated instantaneously when the event takes place. The FLGa output can be disabled to remain at a fixed logic high.

x1FLGa Output. The FLGa output corresponding to axes-1. Functionally, it is identical with the FLGa output of axis-0.

x0FLGb Output. The FLGb output in axis-0. The FLGb output is configured by MCR1 to function as either Sign or Up/Down count direction indicator.

When configured as Sign, the FLGb output remains high when CNTR is in an underflow state (caused by down counts at or below zero), indicating a negative number. When the CNTR counts up past zero, FLGb switches low, indicating a positive number.

When configured as Up/Down indicatior, a high at the FLGb indicates that the current count direction is up (incremental) whereas a low indicates that the direction is down or decremental.

The FLGb output can be disabled to remain at a fixed logic high.

x1FLGb Output. The FLGb output of axis-1. Functionally, it is identical with the FLGb output of axis-0.

x0CKO Output. Axis-0 count clock output. In nonquadrature mode, the CKO output is identical with the input-A clock. In quadrature mode, CKO is derived from the filtered and decoded quadrature clocks applied at the A and B inputs. In either mode CKO is a true representative of the internal count clock.

x1CKO Output. Axis-1 count clock output. Functionally, it is identical with the CKO output of axis-0.

VDD. Supply voltage. Positive terminal.

GND. Supply voltage. Negative terminal.

The information included herein is believed to be accurate and reliable. However, LSI Computer Systems, Inc. assumes no responsibilities for inaccuracies, nor for any infringements of patent rights of others which may result from its use.

Absolute Maximum Ratings:

Parameter	Symbol	Values	Unit
Voltage at any input	VIN	Vss - 0.3 to VDD + 0.3	V
Supply Voltage	Vdd	+7.0	V
Operating Temperature	ТА	-25 to +80	oC
Storage Temperature	Tstg	-65 to +150	oC

DC Electrical Characteristics. (TA = -25° C to $+80^{\circ}$ C, VDD = 3V to 5.5V)

Parameter	Symbol	Min. Value	Max.Value	Unit	Remarks
Supply Voltage	VDD	3.0	5.5	V	-
Supply Current	IDD	-	800	μA	All clocks off
Input Logic Low	VIL	-	0.15Vdd	V	-
Input Logic High	VIH	0.5VDD	-	V	-
Input Leakage Current	lilk	-	30	nA	-
Data Bus Leakage Current	Idlk	-	60	nA	Data bus off
Data Bus Source Current	ldbh	2.0	-	mA	VO = VDD - 0.5V, VDD = 5V
Data Bus Sink Current	IDBL	-6.0	-	mA	VO = 0.5V, VDD = 5V
FLGa, FLGb, INT/ Source	IOSRC	1.0	-	mA	VO = VDD - 0.5V, VDD = 5V
FLGa, FLGb, INT/ Sink	IOSNK	-6.0	-	mA	VO = 0.5V, VDD = 5V

Transient Characteristics. (TA = -25° to $+80^{\circ}$ C, VDD = 3V to 5.5V)

Parameter	Symbol	Min. Value	Max.Value	Unit	Remarks
Read Cycle (See Fig. 2)					
RD/ Pulse Width	tr1	80	-	ns	-
CS/ Set-up Time	tr2	80	-	ns	-
CS/ Hold Time	tr3	0	-	ns	-
RS<2:0> Set-up Time	tr4	80	-	ns	-
RS<2:0> Hold Time	tr5	10	-	ns	-
x0/_x1 Set-up Time	tr6	80	-	ns	-
x0/_x1 Hold Time	tr7	10	-	ns	-
DB<15:0> AccessTime	tr8	80	-	ns	Access starts when both RD/ and CS/ are low.
DB<15:0> Release Time	tr9	-	35	ns	Release starts when either RD/ or CS/ is terminated.
Back to Back Read delay	t r10	10	-	ns	-
Write Cycle (See Fig. 3)					
WR/ Pulse Width	tw1	45	-	ns	-
CS/ Set-up Time	tw2	45	-	ns	-
CS/ Hold Time	twз	0	-	ns	-
RS<2:0> Set-up Time	tw4	45	-	ns	-
RS<2:0> Hold Time	tw5	10	-	ns	-
x0/_x1 Set-up Time	tw6	45	-	ns	-
x0/_x1 Hold Time	tw7	10	-	ns	-
DB<15:0> Set-up Time	tw8	45	-	ns	-
DB<15:0> Hold Time	tw9	10	-	ns	-
Back to Back Write Delay	t W10	90	-	ns	-

For VDD = $3.3V \pm 10\%$					
Parameter	Symbol	Min. Value	Max.Value	Unit	Remarks
Quadrature Mode (See Fig. 4 - 6)	_				
PCKI High Pulse Width	t1	24	-	ns	-
PCKI Low Pulse Width	t2	24	-	ns	-
PCKI Frequency	fpCK	-	20	MHz	-
Filter Clock (ff) Period	t3	50	-	ns	t3 = t1+ t2, MDR0 <7> = 0
	tз	100	-	ns	t3 = t1+ t2, MDR0 <7> = 1
Filter Clock frequency	fr	-	20	MHz	ff = 1/t3
Quadrature Separation	t4	52	-	ns	$t_4 > t_3$
Quadrature Clock Pulse Width	t5	105	-	ns	$t_{5} > 2t_{3}$
Quadrature Clock frequency	fqa, fqb	-	4.5	MHz	$fQA = fQB < 1/4t_3$
Quadrature Clock to Count Delay	tQ1	- 4t3	4.5 5t3	-	IQA = IQB < 1743
x1, x2, x4 Count Clock Pulse Width		25	-	ns	$t_{Q2} = t_3/2$
Quadrature Clock to	102	25	-	115	102 - 13/2
FLGa delay	tfda	4.5t3	5.5t3	ns	_
Quadrature Clock to	liua	4.515	5.515	115	-
FLGb delay	tfdb	Зtз	4t3	ne	
			413	ns	- tid > t4
INDX/ Input Pulse Width	tid	60	-	ns	lld > l4
INDX/ set-up time	tis	10	-	ns	-
INDX/ hold time	tih	10	-	ns	-
FLGa Output Width	tfw	50	-	ns	tfw t4
Non-Quadrature Mode (See Fig. 7	7 - 8)				
Clock A - High Pulse Width	t6	24	_	ns	<u>-</u>
Clock A - Low Pulse Width	to t7	24	_	ns	<u>-</u>
Direction Input B Set-up Time	t8s	24	_	ns	-
Direction Input B Hold Time	te	20	_	ns	_
Clock Frequency	fA	-	20	MHz	$f_A = (1/(t_6 + t_7))$
Clock to FLGa Out Delay	t9	-	40	ns	A = (1/(10 + 17))
FLGa Out Pulse Width	t10	- 24	-	ns	t10 = t7
			-		tio = t/
INDX/ Pulse Width	t11	30	-	ns	-
For VDD = $5V \pm 10\%$.				– .
Parameter	Symbol	Min. Value	Max.Value	Unit	Remarks
Quadrature Mode (See Fig. 4 - 6)		10			
PCK High Pulse Width	t1	12	-	ns	-
PCK Low Pulse Width	t2	12	-	ns	-
PCK frequency	fpCK	-	40	MHz	-
Filter Clock (ff) period	t3	25	-	ns	t3 = t1+ t2, MDR0 <7> = 0
	+0				
	t 3	50	-	ns	t3 = t1+ t2, MDR0 <7> = 1
Filter Clock frequency			- 40		
Filter Clock frequency	ff	-	- 40	MHz	-
Quadrature Separation	f r t4	- 26	-	MHz ns	- t4 > t3
Quadrature Separation Quadrature Clock Pulse Width	fr t4 t5	- 26 52	-	MHz ns ns	- t4 > t3 t5 > 2t3
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency	ff t4 t5 fQA, fQB	- 26 52 -	- - 9.6	MHz ns ns MHz	- t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay	ff t4 t5 fQA, fQB tQ1	- 26 52 - 4t3	- - 9.6 5t3	MHz ns ns MHz -	- t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 -
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width	ff t4 t5 fQA, fQB tQ1	- 26 52 -	- - 9.6	MHz ns ns MHz	- t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to	ff t4 t5 fQA, fQB tQ1 tQ2	- 26 52 - 4t3 12	- 9.6 5t3 -	MHz ns ns MHz - ns	- t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 -
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay	ff t4 t5 fQA, fQB tQ1	- 26 52 - 4t3	- - 9.6 5t3	MHz ns ns MHz -	- t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 -
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to	ff t4 t5 fQA, fQB tQ1 tQ2 tfda	- 26 52 - 4t3 12 4.5t3	- 9.6 5t3 - 5.5t3	MHz ns ns MHz - ns ns	- t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 -
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb	- 26 52 - 4t3 12 4.5t3 3t3	- 9.6 5t3 - 5.5t3 4t3	MHz ns ns MHz - ns ns ns	$t_4 > t_3$ $t_5 > 2t_3$ $f_{QA} = f_{QB} < 1/4t_3$ $t_{Q2} = t_3/2$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid	- 26 52 - 4t3 12 4.5t3 3t3 32	- 9.6 5t3 - 5.5t3	MHz ns ns MHz - ns ns ns ns	$t_4 > t_3$ $t_5 > 2t_3$ $f_{QA} = f_{QB} < 1/4t_3$ $t_{Q2} = t_3/2$ $t_{III} = t_4$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis	- 26 52 - 4t3 12 4.5t3 3t3 32 5	- 9.6 5t3 - 5.5t3 4t3	MHz ns ns MHz - ns ns ns ns ns ns	$t_4 > t_3$ $t_5 > 2t_3$ $f_{QA} = f_{QB} < 1/4t_3$ $t_{Q2} = t_3/2$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time INDX/ hold time	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis tih	- 26 52 - 4t3 12 4.5t3 3t3 32 5 5	- 9.6 5t3 - 5.5t3 4t3	MHz ns ns MHz - ns ns ns ns ns ns ns ns	$t_4 > t_3$ $t_5 > 2t_3$ $f_{QA} = f_{QB} < 1/4t_3$ $t_{Q2} = t_3/2$ $t_{id} > t_4$ $t_{id} > t_4$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis	- 26 52 - 4t3 12 4.5t3 3t3 32 5	- 9.6 5t3 - 5.5t3 4t3	MHz ns ns MHz - ns ns ns ns ns ns	$t_4 > t_3$ $t_5 > 2t_3$ $f_{QA} = f_{QB} < 1/4t_3$ $t_{Q2} = t_3/2$ $t_{III} = t_4$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time INDX/ hold time FLGa Output Width	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis tih tfw	- 26 52 - 4t3 12 4.5t3 3t3 32 5 5	- 9.6 5t3 - 5.5t3 4t3	MHz ns ns MHz - ns ns ns ns ns ns ns ns	$t_4 > t_3$ $t_5 > 2t_3$ $f_{QA} = f_{QB} < 1/4t_3$ $t_{Q2} = t_3/2$ $t_{id} > t_4$ $t_{id} > t_4$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time INDX/ hold time	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis tih tfw	- 26 52 - 4t3 12 4.5t3 3t3 32 5 5	- 9.6 5t3 - 5.5t3 4t3	MHz ns ns MHz - ns ns ns ns ns ns ns ns	$t_4 > t_3$ $t_5 > 2t_3$ $f_{QA} = f_{QB} < 1/4t_3$ $t_{Q2} = t_3/2$ $t_{id} > t_4$ $t_{id} > t_4$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time INDX/ hold time FLGa Output Width Non-Quadrature Mode (See Fig. 7 Clock A - High Pulse Width	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis tih tfw	- 26 52 - 4t3 12 4.5t3 3t3 32 5 5 5 24	- 9.6 5t3 - 5.5t3 4t3	MHz ns ns MHz - ns ns ns ns ns ns ns ns ns	$t_4 > t_3$ $t_5 > 2t_3$ $f_{QA} = f_{QB} < 1/4t_3$ $t_{Q2} = t_3/2$ $t_{id} > t_4$ $t_{id} > t_4$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time INDX/ hold time FLGa Output Width Non-Quadrature Mode (See Fig. 7 Clock A - High Pulse Width Clock A - Low Pulse Width	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis tih tfw	- 26 52 - 4t3 12 4.5t3 3t3 32 5 5 24 12	- 9.6 5t3 - 5.5t3 4t3	MHz ns ns MHz - ns ns ns ns ns ns ns ns	$t_4 > t_3$ $t_5 > 2t_3$ $f_{QA} = f_{QB} < 1/4t_3$ $t_{Q2} = t_3/2$ $t_{id} > t_4$ $t_{id} > t_4$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time INDX/ hold time FLGa Output Width Non-Quadrature Mode (See Fig. 7 Clock A - High Pulse Width Clock A - Low Pulse Width Direction Input B Set-up Time	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis tih tfw Y - 8) t6 t7 t8	- 26 52 - 4t3 12 4.5t3 3t3 32 5 5 24 12 12 12	- 9.6 5t3 - 5.5t3 4t3	MHz ns ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	$t_4 > t_3$ $t_5 > 2t_3$ $f_{QA} = f_{QB} < 1/4t_3$ $t_{Q2} = t_3/2$ $t_{id} > t_4$ $t_{id} > t_4$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time INDX/ hold time FLGa Output Width Non-Quadrature Mode (See Fig. 7 Clock A - High Pulse Width Clock A - Low Pulse Width Direction Input B Set-up Time Direction Input B Hold Time	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis tih tfw 7 - 8) t6 t7 t8 t8	- 26 52 - 4t3 12 4.5t3 3t3 32 5 5 24 12	- 9.6 5t3 - 5.5t3 4t3 - - - - -	MHz ns ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	$t_{4} > t_{3}$ $t_{5} > 2t_{3}$ $f_{QA} = f_{QB} < 1/4t_{3}$ $t_{Q2} = t_{3}/2$ $t_{1} > t_{4}$ $t_{1} > t_{4}$ $t_{1} = t_{4}$ $t_{2} = t_{2}$ $t_{1} = t_{4}$ $t_{1} = t_{4}$ $t_{2} = t_{2}$ $t_{2} = t_{3}/2$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time INDX/ hold time FLGa Output Width Non-Quadrature Mode (See Fig. 7 Clock A - High Pulse Width Clock A - Low Pulse Width Direction Input B Set-up Time Direction Input B Hold Time Clock frequency	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis tih tfw Y - 8) t6 t7 t8 t8 fA	- 26 52 - 4t3 12 4.5t3 3t3 32 5 5 24 12 12 12 12 12 10	- 9.6 5t3 - 5.5t3 4t3 - - - - - - - - 40	MHz ns ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	$t_4 > t_3$ $t_5 > 2t_3$ $f_{QA} = f_{QB} < 1/4t_3$ $t_{Q2} = t_3/2$ $t_{id} > t_4$ $t_{id} > t_4$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time INDX/ hold time FLGa Output Width Non-Quadrature Mode (See Fig. 7 Clock A - High Pulse Width Clock A - Low Pulse Width Direction Input B Set-up Time Direction Input B Hold Time Clock frequency Clock to FLGa Out Delay	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis tih tfw Y - 8) t6 t7 t8 t8 fA t9	- 26 52 - 4t3 12 4.5t3 3t3 32 5 5 24 12 12 12 12 12 10 - -	- 9.6 5t3 - 5.5t3 4t3 - - - - -	MHz ns ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	$t_{4} > t_{3}$ $t_{5} > 2t_{3}$ $f_{QA} = f_{QB} < 1/4t_{3}$ $t_{Q2} = t_{3}/2$ $t_{1} > t_{4}$ $t_{1} > t_{4}$ $t_{1} = t_{4}$ $t_{2} = t_{1} = t_{4}$ $t_{1} = t_{4}$
Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1, x2, x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay INDX/ Input Pulse Width INDX/ set-up time INDX/ hold time FLGa Output Width Non-Quadrature Mode (See Fig. 7 Clock A - High Pulse Width Clock A - Low Pulse Width Direction Input B Set-up Time Direction Input B Hold Time Clock frequency	ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tid tis tih tfw Y - 8) t6 t7 t8 t8 fA	- 26 52 - 4t3 12 4.5t3 3t3 32 5 5 24 12 12 12 12 12 10 -	- 9.6 5t3 - 5.5t3 4t3 - - - - - - - - 40 20	MHz ns ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	$t_{4} > t_{3}$ $t_{5} > 2t_{3}$ $f_{QA} = f_{QB} < 1/4t_{3}$ $t_{Q2} = t_{3}/2$ $t_{1} > t_{4}$ $t_{1} > t_{4}$ $t_{1} = t_{4}$ $t_{2} = t_{2}$ $t_{1} = t_{4}$ $t_{1} = t_{4}$ $t_{2} = t_{2}$ $t_{2} = t_{3}/2$

7766-110806-13

