(=Y ACCES I/0 PRODUCTS INC
I 10623 Roselle St., San Diego, CA 92121
= Tel: (858) 550-9559 FAX: (858) 550-7322

ANALOG AND DIGITAL 10 CARD

AD12-16/16F

USER MANUAL

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

NOTICES

The information in this document is provided for reference only. ACCES I/O PRODUCTS
INC. does not assume any liability arising out of the application or use of the information
or products described herein. This document may contain or reference information and

products protected by copyrights or patents and does not convey any license under the
patent rights of ACCES, nor the rights of others.

IBM PC, PC/XT, and PC/AT are registered trademarks of the International Business
Machines Corporation.

Printed in USA. Copyright 1994 by ACCES 1/0 PRODUCTS INC, 10623 Roselle Street,
San Diego, CA 92121-1506. All rights reserved.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

TABLE OF CONTENTS

INST ALLATION .. 1-1
CD INSTALLATION . . .o 1-1
3.5-INCH DISKETTE INSTALLATION 11
DIRECTORIES CREATED ON THE HARD DISK 1-2

FUNCTIONAL DESCRIPTION 2-1
ANALOG INPUT S .. e e 2-1
INPUT SYSTEM EXPANSION ... e 21
DISCRETE DIGITAL /O . . .o e 2-2
COUNTERI/TIMER .. 2-2
ANALOG OUTPUT . . e e e e e 2-3
INTERRUPTS AND DM A e 2-3
TRANSFERRING DATA INTO THE COMPUTER 2-3
REFERENCE VOLTAGE AND POWER REQUIRED 2-4
INPUT/OUTPUT CONNECTIONS 2-4
UTILITY SOFTWARE . . . e e 2-4
AD12-16/16F BLOCK DIAGRAM 2-5

HARDWARE CONFIGURATION AND INSTALLATION 3-1
OPTION SELECTION . .. e 3-1

MULTIPLEXER CONFIGURATION 3-1
UNIPOLAR/BIPOLAR RANGE s 3-1
INPUT VOLTAGE RANGE e 3-1
OPTION SELECTION MAP . .. e 3-3
COUNTERI/TIMER . .. 3-4
CLOCK FREQUENCY SELECT 3-4
DIGITAL /O . 3-4
SELECTING A BASE ADDRESS 3-4
STANDARD ADDRESS ASSIGNMENTS FOR 286/386/486 COMPUTERS 3-6
SETTING THE BASE ADDRESS 3-7
BASE ADDRESS EXAMPLE 3-7
USING THE SETUP PROGRAM TO SET THE BASE ADDRESS 3-7
INSTALLING THE AD12-16/16F CARD 3-8
CALIBRATION AND TEST 3-8

PROGRAMMING THE AD12-16/16F e 4-1
AD12-16/16F REGISTER ADDRESS MAP 4-1
REGISTER DEFINITIONS 4-2

A/ID REGISTERS ... 4-2
DIGITAL /O o 4-3
ANALOG OUTPUTS ... e 4-4
CARD STATUS AND CLEAR INTERRUPT 4-5
CARD CONTROL REGISTER 4-5
COUNTER/TIMER REGISTERS 4-6

STANDARD DRIVER REFERENCE 5-1
TASK SUMMARY 5-3
TASK REFERENCE 5-3

TASK O: INITIALIZE 5-4
TASK 1: SET MULTIPLEXER SCAN LIMITS 5-5
TASK 2: FETCH MUX SCAN LIMITS AND CURRENT CHANNEL 5-6

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

TASK 3: PERFORM A SINGLE A/D CONVERSION 5-7

TASK 4:DO N A/D CONVERSIONS USING POLLING 5-7

TASK 5: DO N A/D CONVERSIONS USING INTERRUPT 5-9

TASK 6: DO N A/D CONVERSIONS USING DMA 5-11

TASK 7: TERMINATE DMA/INTERRUPT OPERATION 5-13

TASK 8: FETCH DMA/INTERRUPT OPERATION STATUS 5-13

TASK 9: TRANSFER DATA FROM MEMORY TO ARRAY 5-14

TASK 10: SET COUNTER O MODE e 5-16

TASK 11: LOAD COUNTER 0 5-17

TASK 12: READ COUNTER O 5-17

TASK 13: WRITE DIGITAL OUTPUT BITS 5-18

TASK 14: READ DIGITAL INPUT BITS 5-19

TASK 15: WRITE VALUE TO A SINGLE D/A CONVERTER 5-19

TASK 16: WRITE TO BOTH D/A CONVERTERS 5-20

TASK 17: SET COUNTER 1 AND 2 RATE 5-21

TASK 18: D/A OUTPUT ON A/D EOC 5-22

TASK 20: A/D CHANNEL SCAN ON INTERRUPT 5-25
SUMMARY OF ERROR CODES 5-27
USING THE DRIVER WITH TURBO ORBORLAND C 5-28

USING THE DRIVER WITH MICROSOFT C 5-28

USING THE DRIVER WITH TURBO PASCAL i 5-29

USING THE DRIVER WITH QUICKBASIC 5-30
AD12-16/16F WITH AIM-16P DRIVER REFERENCE 6-1
USING THE DRIVER . .. 6-1
THE POINT LIST CONCEPT e 6-1
OTHER SOFTWARE FEATURES 6-2

TASK SUMMARY . . 6-3
TASK REFERENCE 6-3
TASK 0: INITIALIZE 6-3

TASK 1: SET MULTIPLEXER SCAN LIMITS 6-4

TASK 2: FETCH GAIN CODE FOR APOINTADDRESS 6-5

TASK 3: FETCH POINT ADDRESS FOR APOINTLIST INDEX 6-6

TASK 4: ASSIGNS GAIN CODE TO RANGE OF POINT ADDRESSES 6-6

TASK 5: ASSIGN POINT ADDRESSES TO THE POINT LIST 6-8

TASK 6: FETCH DATA FROM A POINT ADDRESS 6-8

TASK 7: FETCH SINGLE DATA POINT USING POINT LIST 6-9

TASK 8: FETCH MULTIPLE BUFFERED CONVERSIONS 6-10

TASK 9: INTERRUPT DRIVEN DATA ACQUISITION 6-11

TASK 10: THERMOCOUPLE/FUNCTION ASSIGNMENT 6-13

TASK 11: RESET FUNCTIONS 6-16

TASK 12: DIGITAL OUTPUT ... e 6-17

TASK 13: DIGITAL INPUT .. e 6-17

TASK 14: COUNTER/TIMER SETUP 6-18

TASK 15: READ COUNTER/TIMER COUNT 6-19

TASK 16: HHIGH PERFORMANCE BUFFERED CONVERSIONS 6-19

TASK 17: DO N A/D CONVERSIONS USING DMA 6-20

TASK 18: TRANSFER DATA FROM MEMORY TO ARRAY 6-22

TASK 19: TERMINATE DMA/INTERRUPT OPERATION 6-23

TASK 20: WRITE VALUE TO AD/A CONVERTER 6-24
SUMMARY OF ERROR CODES e 6-25
A/D CONVERTER APPLICATIONS 7-1
CONNECTING ANALOG INPUTS 7-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

COMMENTS ON NOISE INTERFERENCE e 7-1
GroUNd LOOPS . . ot it 7-2

External Noise 7-2

INPUT RANGE AND RESOLUTION SPECIFICATIONS 7-2
CURRENT MEASUREMENTS e e 7-2
MEASURING LARGE VOLTAGES e e e 7-3
ADDING MORE ANALOG INPUTS ... e 7-3
PRECAUTIONS - NOISE, GROUND LOOPS, AND OVERLOADS 7-4
COUNTERI/TIMER OPERATIONS . . . e e e e 8-1
OPERATIONAL MODES e e e i 8-1

Mode 0: Pulse on Terminal Count 8-1

Mode 1: Retriggerable One-Shot 8-2

Mode 2: Rate Generator 8-2

Mode 3: Square Wave Generator 8-2

Mode 4: Software Triggered Strobe 8-2

Mode 5: Hardware Triggered Strobe 8-2
PROGRAMMING ... e e e e 8-3
READING AND LOADING THE COUNTERS i 8-4
PROGRAMMING EXAMPLES e 8-6

Generating a Square Wave Output i 8-6

Determining Status of Counter#1 8-6

Using Counter #0 as aPulse Counter 8-6

Reading Counter #0 8-6

PROGRAMMING EXAMPLES USING THE A16DRV DRIVER 8-7
COUNTER/TIMER ENABLE REGISTER e e 8-8
TRIGGERING THE A/D PERIODICALLY e e 8-8

GENERATING SQUARE WAVES OF PROGRAMMED FREQUENCY 8-9

MEASURING FREQUENCY AND PERIOD i 8-10

GENERATING TIME DELAY S . . . e 8-10

Pulse On Terminal Count 8-10

Programmable One-Shot 8-11

Software Triggered Strobe 8-11

Hardware Triggered Strobe 8-11

GENERATING INTERRUPTS WITH THE COUNTER/TIMER 8-11

D/A CONVERTERS . .. e e e 9-1
PROGRAMMING ... e e e e e 9-1

USE WITH AC REFERENCE e 9-3
ARBITRARY WAVEFORM OUTPUT e e 9-3
CABLING AND CONNECTOR INFORMATION e e 10-1
AD12-16/16F OUTPUT CONNECTOR PIN ASSIGNMENTS 10-1
AD12-16/16F TO AIM-16P CABLE ADAPTER ASSEMBLY 10-2
CA37-2 - AD12-16/16F ADAPTOR TO SECOND STRING OF AIM-16's 10-3
SPECIFICATIONS . . e 11-1
WA RR AN T Y L 12-1
LINEARIZATION o A-1
BASIC INTEGER VARIABLE STORAGE e B-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL
DIRECT MEMORY ACCESS C-1
IBM PC DMA STRUCTURE C-1
PAGE REGISTER AND DMA CONTROLLER FUNCTIONS C-3

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

1-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

This page purposely omittted.

1-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

FUNCTIONAL DESCRIPTION

The AD12-16 and AD12-16F are multifunction high-speed analog/digital I/O cards for use
in IBM Personal Computers. They are full length cards that can be installed in expansion
slots of IBM PC/XT/AT and compatible computers. With this card installed, the computer
can be used as a precision data acquisition and control system or as a signal analysis
instrument. The following paragraphs describe functions provided by this card.

ANALOG INPUTS

The card accepts up to eight differential or 16 single-ended analog input channels. Inputs
are protected against overvoltages up to £35 volts and typically survive static discharges
beyond 4000 volts. When power is off, the inputs are open-circuited providing fail-safe
operation and continue to offer +20V overvoltage protection. The channel input
configuration is switch selectable on the card providing a choice between sixteen
single-ended channels or eight differential channels. In the latter case, common mode
rejection ratio is a minimum 6 dB and common mode voltage range is +11V.

Inputs are amplified by an instrumentation amplifier with switch selectable gains of 10, 5,
2,1, and 0.5 to provide voltage ranges of 1, 2, 5, and 10 volts unipolar and 0.5, £1, +2.5,
15, and +£10 volts bipolar. In addition, you can set up a special range by installing a single
gain-setting resistor.

AD12-16 uses an industry standard 12-bit successive-approximation analog-to-digital
converter (A/D) with a sample and hold amplifier input. Under ideal conditions, throughputs
of up to 50,000 conversions per second are possible. (AD12-16F uses a faster A/D and
throughputs up to 100,000 conversions per second are possible.)

A/D conversions may be initiated in any one of three ways: (a) by software command, (b)
by on-board programmable timer, or (c) by direct external trigger. In turn, data may be
transferred to the computer by any of three software selectable methods: (a) by polling for
EOC (End Of Conversion), (b) by EOC interrupt, or (c) by direct memory access (DMA).

INPUT SYSTEM EXPANSION

The card can be used with up to 16 external AIM-16P analog input expansion cards. (This
necessitates converting some digital inputs to digital outputs as will be described later.)
Each AIM-16P card provides capability for 16 differential inputs and, thus, there can be up
to a maximum of 256 inputs per combination of AIM-16P's and AD12-16/16F. The first
AIM-16P is connected to the AD12-16/16F by a special cable adapter and ribbon cable, any
additional AIM-16P cards are daisy-chained to each other by ribbon cables. Cabling
information is provided in Appendix B.

Normally the AIM-16P is connected to a single-ended input configuration of the

2-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

AD12-16/16F. However, if interconnect cable noise becomes a problem or if long cables
are necessary, then the AIM-16P cards can be connected to the differential inputs of
AD12-16/16F. A differential connection allows better monitoring of remote locations
because noise will be reduced by the common mode noise rejection capability of
AD12-16/16F. (Note: In this configuration, the maximum number of inputs accommodated
is 128.) AIM-16P card address and channel address on the selected AIM-16P are
controlled by digital outputs from the AD12-16/16F.

To use the programmable gain feature of the AIM-16P, the AD12-16/16F digital inputs bits
IP1, IP2 and IP3 must be converted to digital outputs. This conversion is done by installing
jumpers D5, D6 and D7.

DISCRETE DIGITAL /O

Four bits of TTL/CMOS-compatible digital input capability are provided. Digital inputs IPO
and IP2 have dual uses. Input IPO provides an external trigger for the A/D or can be used
as the gate for Counter/Timers 1 and 2. |Input IP2 provides an input to enable
Counter/Timer 0.

The digital input bits can be converted to output ports for AIM-16P applications as
described in the INPUT SYSTEM EXPANSION section of this chapter. When this is done,
you give up capability for gating Counter/Timer 0. In this case discrete inputs IP1 though
IP3 are used to control the gain of the AIM-16P.

Four bits of digital output are available with LSTTL logic levels and 10 LSTTL load drive
capability. Discrete outputs OPO through OP3 provide multiplexer addressing. capability
for input expansion card use, as described in the INPUT SYSTEM EXPANSION section,
or as separate digital outputs.

COUNTER/TIMER

The AD12-16/16F contain a type 8254 counter/timer which has three 16-bit programmable
down counters. Counter/Timer 0 is enabled by a digital input (IP2) and uses either an
internal 100 KHz clock or an external clock of up to 10 MHz as selected by user software.
This counter/timer is not committed on the card; it's clock, enable, and output lines are
available to you at the 1/0O connector. Counter/Timers 1 and 2 are concatenated and form
a 32-bit counter/timer for timed A/D trigger pulses and/or for external frequency generation.
The dual counter/timer can be enabled by program control and clocked by a
jumper-selected 1 MHz or 10 MHz on-board crystal oscillator source.

2-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

Counter/Timer 0 and Counter/Timers 1 and 2 can be set up for event counting, frequency
or period measurements, and pulse or wave form generation. Also, Counter/Timers 1 and
2 can be programmed to initiate A/D conversions. See the PROGRAMMABLE INTERVAL
TIMER section of this manual for a description of ways that the type 8254 counter/timer
chip can be used.

ANALOG OUTPUT

The AD12-16/16F has two multiplying 12-bit digital-to-analog converters (D/A) connected
to output drivers capable of providing 5 mA current drive. Each channel provides an output
of 0 to +5VDC if the internal -5V reference voltage is used; i.e., jumper from I/O connector
pin 8 to pin 10 (DAC 0) and from pin 8 to pin 26 (DAC 1). That on board reference voltage
can be replaced by an externally supplied reference voltage (biased AC or DC). In this
case, the D/A's will operate as multiplying D/A's with two quadrant capability. The
maximum external reference voltage that can be applied is -10 volts.

INTERRUPTS AND DMA

Interrupts can be initiated by completion of an A/D conversion or by DMA terminal count
if programmed by software. Interrupt levels 2 through 7 are selectable via software.

Software control of direct memory access for transfer of A/D conversion data to the
computer is supported at either DMA level 1 or 3 as selected by switch S1.

TRANSFERRING DATA INTO THE COMPUTER

The AD12-16/16F has been designed using state of the art components to provide high
data throughput using the DMA capabilities of the IBM PC family. Direct memory access
is the most satisfactory way to transfer data from the A/D to memory at rates over 10,000
samples/second. At this speed, program transfers through the CPU become difficult to
handle in the short time available between conversions.

Also, program transfers are subject to disruption by other interrupt processes in the
computer. Use of real time triggering of the A/D plus DMA assures synchronism in
sampling that is unaffected by other computer operations. That capability is essential in
applications such as signal analysis, fast fourier transform, and vibration and transient
analysis where high data rates must be sustained for short intervals of time.

Thus, AD12-16/16F's open I/O-mapped architecture together with three modes of data

transfer (polling via CPU, interrupt via CPU, and DMA) provides considerable application
flexibility.

2-3

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

REFERENCE VOLTAGE AND POWER REQUIRED

A -5.0 volt (+0.05) reference voltage is available from the A/D reference source for external
use. This reference output can source up to 5 mA of current. The AD12-16/16F requires
only +5VDC and +12VDC from the computer power supply. An on-board DC-DC converter
translates the 12VDC to low noise, isolated £15VDC for the precision analog circuitry.

INPUT/OUTPUT CONNECTIONS

External connections can be made through a standard 37-pin male connector located at
the rear of the computer. AIM-16P's may be connected using special cabling as described
in APPENDIX B.

UTILITY SOFTWARE

Utility software is provided on CD with the AD12-16/16F card. This software includes an
illustrated setup and calibration program, software drivers for QuickBASIC, Turbo-C, and
Turbo-Pascal, and sample programs. Additionally, a utility driver for use with VisualBASIC
for Windows is provided. Section 3 of this manual contains a detailed description.

As a further convenience in application, the AD12-16 and AD12-16F are also supported by
several third-party software packages. The drivers for these cards are the same ones used
for the Keithley/MetraByte DAS-16/16F. However, these drivers do not take advantage of
the channel-by-channel gain programming capability of the AIM-16's.

Some available software packages are listed below:

a. .. STREAM-16 high speed hard disk transfer utility. Continuous A/D data
transfer rates to hard disk in excess of 50 KHz are possible on PC/AT and
somewhat slower on PC/XT depending on the hard disk controller type.

b. .. LABTECH NOTEBOOK and LT CONTROL menu-driven data acquisition,
analysis and control packages from Laboratory Technologies Corp.

c. .. ASYST programmable data acquisition and analysis software from

Keithley/ASYST.

d. .. ASYSTANT menu-driven data acquisition and analysis software from
Keithley/ASYST.

e. .. UNKELSCOPE menu-driven data acquisition and analysis from Unkel

Software Inc. (Copyright M.I.T.)

f. .. SNAPSHOT STORAGE SCOPE menu-driven data acquisition and analysis
package from H.E.M. Data Corp.

g. .. TTOOLS utilities for the Turbo-Pascal programmer from Quinn-Curtiss
Software.

h. .. CTOOLS utilities for the C programmer by the Systems Guild.

2-4

ANALOG/DIGITAL I/0 CARD

AD12-16/16F

USER MANUAL

UNI | UNIPOLAR/
BIPOLAR y
BP | SELECT
16 S.E/ ref
8 DIFFL
SWITCH
. SAMPLE/
po g v— HoLD 12 BT AD CONVERTER
’ 18V DCOC | sy
RN ERNEN L6y «_ CONERTER
16 SE. 01'5 AD & MUX
R 2 | GA
8 DIFFL MUX 5 |onecr DATA REGISTER
ANALOG 10
INPUTS USER LDE'\GEAL
SELECT
STATUS N
REGISTER
iCH‘IS 1O— DMA
MUX_INCREMENT
& CONTROL LOGIC CONTROL
|
Vief IN o—— B
DAIA | A—A|M
12 8 DA INTERNAL DATA BUS
D/A 0 OUT o—| N— e .
C
Vief IN o |
DA 1 R
BIA T OUT o 127BIT D/A< TRICCER Es B
locic [[$—JADDRESS g
AD RIG % & DECODE
TIMER ENABLE ET &
P —7 REGISTER RS+ seect
IPO a
PTo—— 4 g 3
P2 INPUT
R
” | REGISTER _| g 1
CIRO GATE > REGISTER
—1 o || o B i
BIT BIT l
i 4 BT CRR CR CR
o o (T o] |
op2 REGISTER
o CONTROL
© o
CIRO CIRO CTIR2 L
ciock o Ut

FIGURE 1-1: AD12-16/16F BLOCK DIAGRAM

2-5

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

(This page purposely omitted.)

2-6

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

HARDWARE CONFIGURATION AND INSTALLATION

OPTION SELECTION

Many of the AD12-16/16F card features are selected by hardware jumpers or switches.
At least one of each of the option categories must be selected if the card is to operate
correctly. The setup program provided on CD with the card provides menu-driven pictorial
presentations to help you quickly set up the card.

You may also refer to FIGURE 3-1: OPTION SELECTION MAP, and the following sections
to set up the card. The card need not be plugged into the computer at this time.

MULTIPLEXER CONFIGURATION

Select the desired A/D input multiplexer configuration using switch S3 located in the upper
right hand corner of the card near the I1/O connector:

8-Channel Differential Input = 8CH position
16-Channel Single-Ended Input = 16CH position

UNIPOLAR/BIPOLAR RANGE

In the unipolar mode, inputs can be positive only; i.e., ranges from zero volts to some
positive voltage. (The maximum voltage span in the unipolar mode is 10V.) In the bipolar
mode, inputs can be between positive and negative full scale limits. Select for unipolar or
bipolar range using switch S2 located just above U38:

Unipolar = UNI position (up)
Bipolar = BIP position (down)

INPUT VOLTAGE RANGE

Input voltage range is selected using sections of GAIN SEL switch S5 for gains of 1, 2, 5,
and 10 and by installing the 0.5 GAIN jumper. Note that switch S5 is oriented such that,
when the card is installed in the computer, it is possible to change gain (and thus range)
at the rear of the computer without removing the card from the computer. The 0.5 GAIN
jumper is located at the top of the card.

3-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

The following table relates voltage range to the gain settings required. As will be discussed
later, it's possible to establish a special range. In that case, the special range is designated
USER in the following table.

DESIRED INPUT RANGE S5 GAIN
SELECT

UNIPOLAR UNIPOLAR BIPOLAR BIPOLAR

x%2 jumper in X2 jumper out | x% jumperin | x% jumper out

0-5V 0-10V +5V +10V All switches OFF

0-2.5V 0-5V +2.5V +5V Only switch 6 ON

0-1V 0-2V 1V 2V Only switch 5 ON

0-0.5V 0-1V +0.5V 1V Only switch 4 ON

USER USER +tUSER +tUSER Only switch 3 ON

When viewed from the connector end of the card, a switch section is turned ON by moving

the tab to the left. Also, switch sections are numbered 6 through 1 as viewed from top to
bottom.

DMA LEVEL SELECT

Slide switch S1, located immediately above the gold edge connector, selects the direct
memory access (DMA) level. If you have floppy disk drives only in your computer, set this
switch to level 3 (the right hand position). If your computer contains a hard disk, level 1 is
preferable. For a detailed description of DMA, refer to Appendix D of this manual.

3-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

FIGURE 2-1: OPTION SELECTION MAP

|
|

Switches:

E1=DMA Laval

S2mlUnlpolar/Blpolar

53=146CH(zIngle &endad)}/BCH{dIfferantlal}

Sd=Bqgasa Addreyy

a2 55=Galn Selact

1 . Potentiomeatars:

...................... - RP1=DfA #1 Span Ad]ust

[[CEE RP2=D/A #0 Span Ad]ust

D7 RPA=LfA #0 Zoro Ad]ust

DI? RPA=0fA #1 Taroc Ad]uat
RPS=Gailn 1 Ierp Ad|ust

=CTROEM RP4=Caln 10 Zaro Ad]ust
RP7=Saln Span Adjust

RPg=Saln 2 Adjust (FACTORY SET)
RP?=Galn & Adjust (FACTORY SET)

]
|

1

ﬁﬁm

—

3

Jumpers:

CTROEM=Countar 0 Enabla
CLOCK=Clock Selactlon (Input to CTR1)
#1f2=CGaln of 1/2 {(When Removaed)
D4=5alact IPD as OP4

DEé=3alect IF1 as CPS

Dé=3mlect IP2 as CPa

CimSmalasct IF3 as GP7F

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

COUNTER/TIMER

Three 16-bit Counter/Timers are provided on AD12-16/16F. Refer to the block diagram on
page 1-5 for an understanding of the counter/timer configuration and to CHAPTER 7:
COUNTER/TIMER OPERATIONS for a description of applications. Counter 0 is fully
accessible to you if multiple AIM-16P's are not being used with the AD12-16/16F as
described in the first section: FUNCTIONAL DESCRIPTION.

Counters 1 and 2 are intended for software-programmed, timed A/D start. Counter O has
its clock and output lines available on the I/O connector. The gate input for Counter 0 is
at digital input IP2.

CLOCK FREQUENCY SELECT

The clock for Counter 1 is either 1 MHz or 10 MHz derived from an on-board crystal
oscillator and selected by the CLOCK jumper located under DC/DC Converter transformer
T1. Installing the jumper between the upper two posts selects 10 MHz and installing the
jumper between the lower two posts selects 1 MHz.

DIGITAL 1/0

As mentioned in CHAPTER ONE: FUNCTIONAL DESCRIPTION, digital input ports IPO
through IP3 can be converted to output ports by installation of jumpers on the card. These
are jumpers D4 through D7 located to the left of the A/D converter chip and adjacent to SIP
resistor network RN2.

SELECTING A BASE ADDRESS

You need to select an unused segment of 16 consecutive 1/O addresses. The base
address will be the first address in this segment. The base address may be selected
anywhere on a 16-bit boundary within the 1/0 address range 200-3FF hex providing that
it does not overlap with other functions. The following procedure will show you how to
select the base 1/0 address.

1) Check the tables in FIGURES 2-2 and 2-3 for lists of standard address assignments
and then check what addresses are used by any other I/O peripherals that are
installed in your computer. Memory addressing is separate from I/O addressing, so
there is no possible conflict with any add-on memory that may be installed in your
computer. We urge that you carefully review the address assignment table before
selecting a card address. If the addresses of two installed functions overlap,
unpredictable computer behavior will result.

2) From this list, (or using the FINDBASE program) select an unused portion of 16
consecutive /O addresses. Note from the tables that the sections 280-2EF and
330-36F are unused. This address space is a good area to select a base address

3-4

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

from. Also, if you are not using a given device listed in the tables, then you may use
that base address as well. For example, most computers do not have a prototype

card installed. If your computer does not have one, then base address 300 hex is
a good choice for a base address.

3) Finally make sure that the base address you have chosen has the last digit as 0.
This insures that your base address is on a 16-bit boundary.

3-5

ANALOG/DIGITAL I/0 CARD AD12-16/16F

USER MANUAL

FIGURE 2-3: STANDARD ADDRESS
ASSIGNMENTS FOR 286/386/486
COMPUTERS

Hex Range Usage

000-01F DMA Controller 1

020-03F INT Controller 1, Master
040-05F Timer

060-06F 8042 (Keyboard)

070-07F Real Time Clock, NMI Mask
080-09F DMA Page Register

0AO0-OBF INT Controller 2

0CO0-0DF DMA Controller 2

OFO0 Clear Math Coprocessor Busy
OF1 Reset Coprocessor

OF8-0FF Arithmetic Processor

1F0-1F8 Fixed Disk

200-207 Game I/O

278-27F Parallel Printer Port 2

2F8-2FF Asynchronous Comm'n (Secondary)
300-31F Prototype Card

360-36F Reserved

378-37F Parallel Printer Port 1

380-38F SDLC or Binary Synchronous Comm'n 2
3A0-3AF Binary Synchronous Comm'n 1
3B0-3BF Monochrome Display/Printer
3C0-3CE Local Area Network

3D0-3DF Color/Graphic Monitor

3F0-3F7 Floppy Diskette Controller
3F8-3FF Asynchronous Comm'n (Primary)

3-6

ANALOG/DIGITAL I/0 CARD

AD12-16/16F

USER MANUAL

SETTING THE BASE ADDRESS

The AD12-16/16F base address is selected by DIP switch S4 located in the lower right
hand portion of the card directly adjacent to the I/O connector. Switch S4 controls address
bits A4 through A9. (Bits A0 through A3 are used for the 16 address locations in I/O space
required by the AD12-16/16F.) The following procedure will show you how to set the base
address. See FIGURE 2-4: BASE ADDRESS EXAMPLE below for a graphic

representation of this example.

1) We will use base address 300 hex as an example.

representation for your base address.
representation is 11 0000 0000. The conversion multipliers for each binary bit are
contained in FIGURE 2-4 for reference.

2) Locate switch S on the lower right side of the card, next to the I/O connector. Note
there are 6 switches, which will be used to set the first six bits in the binary
representation from step 1). The last 0 is assumed and therefore need not be set.

3) Note from FIGURE 2-4 that switch position A9 corresponds to the most significant
bit in your binary representation. For each bit in your binary representation, if
the bit is a one, turn the corresponding switch off; if the bit is zero, turn the

Determine the binary
In our example, 300, the binary

corresponding switch on.

FIGURE 2-4: BASE ADDRESS EXAMPLE

Hex representation

Binary representation 1 1 0 0 0 0
NO
Conversion multiplier 2 1 8 4 2 1 SWITCH
. SETTINGS
Switch ID A9 A8 A7 A6 A5 A4
e REQUIRED
Switch setting OFF OFF ON ON ON ON

USING THE SETUP PROGRAM TO SET THE BASE ADDRESS

The setup program provided on CD with AD12-16/16F contains an interactive menu-driven
program to assist you in setting the base address. The following procedure demonstrates

the use of the setup program.

1) Select the desired base address.

2) Execute the setup program by typing SETUP and pressing the ENTER key.

3) Select the firstitem in the menu, 1) Set board address. with the up or down arrow

3-7

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

key and press ENTER.

4) Enter the desired base address in hex, the program will display a graphic
representation of how you should set the switches. You may press the space bar
to try another address.

5) Set DIP switch S4 as shown on the graphic representation.

INSTALLING THE AD12-16/16F CARD
The following procedure will show you how to install the AD12-16/16 inside the computer.

1) Ensure that all options have been set as described in the first part of this chapter.
Be sure to pay close attention to base address selection.
2) Turn off the power switch of your computer and remove the power cords from the
wall outlet.
CAUTION

FAILURE TO REMOVE POWER FROM THE COMPUTER COULD RESULT IN ELECTRICAL
SHOCK, OR DAMAGE TO YOUR COMPUTER SYSTEM.

3) Remove the computer cover.

4) Locate an unused full length slot, and remove the blank 1/0O back plate.

5) Insertthe card in the slot, and install the I/O back plate screw. To ensure that there
is minimum susceptibility to EMI and minimum radiation, it is important that there be
a positive chassis ground. Also, proper EMI cabling techniques must be used on
I/O wiring.

6) Inspect the installation for proper fit and seating of the card.

7) Replace the computer cover.

8) Reapply power to the computer.

9) Perform the calibration procedure which follows.

CALIBRATION AND TEST

Periodic calibration of AD12-16/16F is recommended to retain full accuracy. The
calibration interval depends to a large extent on the type of service that the card is
subjected to. For environments where there are frequent large changes of temperature
and/or vibration, a three-month interval is suggested. For laboratory or office conditions,
six months to a year is acceptable.

A 4-1/2 digit digital multimeter is required as a minimum to perform satisfactory calibration.

Also, a voltage calibrator or a stable noise-free DC voltage source that can be used in
conjunction with the digital multimeter is required.

3-8

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

Calibration is performed using the SETUP program supplied with your card. This program
will lead you through the set up and calibration procedure with prompts and graphic
displays that show the settings and adjustment trim pots. This calibration program also
serves as a useful test of the AD12-16/16F A/D and D/A functions and can aid in
troubleshooting if problems arise.

CALIBRATION SOFTWARE

The following procedure is brief and is intended for use in conjunction with the calibration
part of the SETUP program.

1)

2)

3)

4)

5)

6)

7)

8)

9)

Start the calibration program by typing SETUP and press the ENTER key at the
DOS prompt.

Use the relevant menu selections to set the switches and jumpers for the manner
in which the card will be used; i.e., number of channels, gain, and polarity. These
settings are used by the calibration portion of the program. Note: The card must be
in the 16-channel single-ended configuration for this calibration procedure.

Use the arrow key to select option 7) Calibrate, then press the ENTER key.

The program displays a message about the initial settings. Press any key to
continue.

Following the instructions on the screen, perform the Zero adjustment. Press
ENTER when complete.

The program will now compute the full-scale adjustment voltage. Apply this voltage
as instructed and make the full-scale adjustment. Press ENTER when complete.

Now, use the -5V reference voltage on the card (or your own reference voltage) as
shown on the screen. Perform DACO zero adjustment as instructed and press
ENTER when complete.

Now perform the DACO span adjustment.

Steps 7 and 8 will be repeated by the program for zero and span adjustment of
DAC1.

10) This completes the calibration procedure.

3-9

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

This page purposely omitted.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

PROGRAMMING THE AD12-16/16F

This section provides you with information on how to program the AD12-16/16F. First,
information is provided on how to program the card using direct register access. Following
this is information on using the device drivers provided with the AD12-16/16F.

At the lowest level, the AD12-16/16F can be programmed using direct I/O input and output
instructions. In BASIC, these are the INP (X) and OUT X,Y functions. Assembly language
and most high level languages have equivalent instructions. Use of these functions usually
involves formatting data and dealing with absolute I/O addresses. Although not
demanding, this can require many lines of code and requires an understanding of the
devices, data format, and architecture of the AD12-16/16F.

AD12-16/16F REGISTER ADDRESS MAP

The AD12-16/16F uses 16 consecutive addresses in I/O space as follows:

REGISTER ADDRESS READ FUNCTION WRITE FUNCTION

BASE ADDRESS + 0 A/D Low Byte and Channel Number Start A/D Conversion

BASE ADDRESS + 1 A/D High Byte Not Used

BASE ADDRESS + 2 Start/Stop Channel Range Start/Stop Channel Range

BASE ADDRESS + 3 Four-Bit Digital Input Four-Bit Digital Output

BASE ADDRESS + 4 Not used DAC 0 Low Byte
BASE ADDRESS + 5 Not Used DAC 0 High Byte
BASE ADDRESS + 6 Not Used DAC 1 Low Byte
BASE ADDRESS +7 Not Used DAC 1 High Byte

BASE ADDRESS + 8

Card Status

Clear Interrupt

BASE ADDRESS + 9

Card Control

Card Control

BASE ADDRESS + 10

Not Used

Counter Enable

BASE ADDRESS + 11

Not Used

Not Used

BASE ADDRESS + 12

Counter 0 Count Value

Counter 0 Load

BASE ADDRESS + 13

Counter 1 Count Value

Counter 1 Load

BASE ADDRESS + 14

Counter 2 Count Value

Counter 2 Load

BASE ADDRESS + 15

Not Used

Counter Control

4-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

REGISTER DEFINITIONS
A/D REGISTERS

A/D data are in true binary form and are latched in the A/D registers at the end of each
conversion. These are read at base address and base address +1 in low-byte/high-byte
sequence. The data are available until the end of the next A/D conversion. Channel
address, also in binary form, is supplied with the data.

Base + 0 Read: Contains the lower four bits of the A/D converter output in binary form and
the channel address in binary form.

B7 B6 B5 B4 B3 B2 B1 BO

AD3 AD2 AD1 ADO MA3 MA2 MA1 MAO

ADO-AD3: The lower four bits of the A/D conversion, ADQ is the least-significant bit.
MAO-MA3: The binary representation of the channel number converted, MAO is the
least-significant bit.

Base + 0 Write: A write to this location starts an A/D conversion. The data written is
irrelevant. This causes the EOC bit of the status register to go high until the conversion is
complete.

Base + 1 Read: Contains the upper eight bits of the A/D converter output in binary form.

B7 B6 B5 B4 B3 B2 B1 BO

AD11 AD10 AD9 AD8 AD7 ADG6 AD5 AD4

AD4-AD11: The most significant eight bits of the A/D conversion, AD11 is the most-
significant bit.

Base + 2 Read and Write: This register controls the multiplexer scan limits and contains
the channel scan starting and ending channel numbers in binary form. About 1/2
microsecond after the A/D starts a conversion, while the sample and hold amplifier is
holding the previous channel, the multiplexer address is incremented to prepare for the next
conversion. When conversion is complete at the Stop channel (High Channel Number),
the cycle repeats starting with the Start channel (Low Channel Number). When

4-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

writing to this register, the multiplexer is always automatically initialized to the Start Channel
number.

B7 B6 B5 B4 B3 B2 B1 BO

HMA3 HMA2 HMA1 HMAO LMA3 LMA2 LMA1 LMAOQ

LMAO-LMA3: Binary representation of the starting channel number, LMAO is the
least-significant bit.

HMAO-HMAS3: Binary representation of the ending channel number, HMAQO is the
least-significant bit.

To perform conversions on a single channel, the Start channel and the Stop channel
numbers should be made equal to the desired channel number. If the AD12-16/16F is to
be operated in the 8-channel differential mode, you should ensure that the HMA3 and
LMAS3 bits are zero. Also, when using the differential mode, you should not set the lower
scan limit greater than the upper scan limit. If you do this, when the upper scan limit is
reached, the multiplexer will try to cycle to channel 15, which is an undefined condition.
You can determine the multiplexer operating mode by reading bit 5 of the card status
register at base address + 8.

DIGITAL 1/0

Digital I/0 available consists of two 4-bit ports; a 4-bit input port, IPO-IP3, and a 4-bit output
port, OP0-OP3. These ports share the same I/O address but are essentially independent;
i.e., data written to the output port isn't readable at the input port unless the lines are
externally connected. In addition, two of the input port lines do double duty. IPO is the
entry point for external A/D triggers and IP2 provides gate inputs for Counter 0 in the
Counter/Timer. These secondary functions may or may not be used, depending on the
application. In addition, there are jumpers on the card that permit conversion of the input
ports to outputs on a bit-by-bit basis (Jumpers D4 through D7).

Base + 3 Write: Write digital output.

B7 B6 B5 B4 B3 B2 B1 BO

oP7* OoP6* OoP5* OoP4* OP3 OoP2 OP1 OPO

OPO0-OP3: These are the four bits of digital output.
OP4-OP7 These are optional additional digital output.
*NOTE: OP4 through OP?7 are only available if
Jjumpers D4 through D7 are installed on the card.

Base + 3 Read: Read digital input.

4-3

ANALOG/DIGITAL I/0 CARD

AD12-16/16F

USER MANUAL

B7

B6

B5

B4

B3

B2

B1

BO

X

X

X

X

IP3

P2

IP1

IPO

IPO-IP3: These are the four bits of digital input. NOTE: These are only available if the
jumpers D4 through D7 are NOT installed on the card.

X: These bits are don't care. It is good programming practice to set these bits
to O.

ANALOG OUTPUTS

D/A Converter (DAC) registers are write-only registers and require a low-byte/high-byte
write sequence to load the 12-bit DAC's. Note that the registers are double buffered so that
the DAC's are not updated until the second (high) byte is written. Thus, you can write the
low bytes to DAC's 0 and 1 first and then the high bytes to DAC's 0 and 1. This ensures
near-simultaneous transition of the analog outputs. Data are true binary and left justified.

Base + 4 Write: Write DAC 0 least significant byte.

B7 B6 B5 B4 B3 B2 B1 BO

DA3 DA2 DA1 DAO X X X X

DAO0-DAS3: Least-significant four bits of the DAC 0 output value. DAO is the least-
significant bit.

X: These are "don't care" bits. It is good programming practice to set these bits
to 0.

Base + 5 Write: Write DAC 0 most significant byte.

B7 B6 B5 B4 B3 B2 B1 BO

DA11 DA10 DA9 DA8 DA7 DAG6 DAS5 DA4

DA4-DA11:The eight most-significant bits of the DAC 0 output. DA11 is the most-
significant bit.

Base + 6 Write: Write DAC 1 least-significant byte. The format is the same as base +4

Base + 7 Write: Write DAC 1 most-significant byte. The format is the same as base +5.

CARD STATUS AND CLEAR INTERRUPT

The Status register provides information about the operation and configuration of the
analog input functions of the card. Writing to the Status register clears interrupt requests

4-4

ANALOG/DIGITAL I/0 CARD

AD12-16/16F USER MANUAL

and provides means of acknowledging an AD12-16/16F interrupt and re-enabling it.

Base + 8 Read: Read the card status.

EOC:

U/B:

MUX:

INT:

MA3-MAO:

B7 B6 B5 B4 B3 B2 B1 BO
EOC u/B MUX INT MA3 MA2 MA1 MAO
End of conversion. If EOC =1, an A/D conversion is underway. If EOC is O,

then the A/D data registers contain valid data from the previous conversion and
the A/D is ready to perform the next conversion.

Unipolar/Bipolar. If the unit is operating in unipolar mode, this bit will be a 1, or
if operating in bipolar mode, the bit will be a 0.

Single Ended/Differential. If the multiplexeris set up for 16-channel single-ended
inputs, this bit will be a 1. If setup for 8-channel differential inputs, this bit will be
0.

Interrupt. This is the interrupt signal which is directed to IRQ2-IRQ7 by the
Control Register. If interrupts are disabled, INT will be a 0. After generation of
an interrupt, this bit will be 1 and will remain high until reset by a write to this
Status register. Your interrupt handler routine should include a write to the
Status register at some point to re-enable interrupts from the AD12-16/16F.
Multiplexer Address. This is the channel number of the next channel to
be converted if the EOC bit is a 0. MAO is the least-significant bit. The
channel address changes shortly after the EOC bit goes high and when
EOC is high may be indeterminate.

Base + 8 Write: Clear interrupts. A write to this location will clear the interrupt status bit

and reset interrupts on the card. The value written is irrelevant.

CARD CONTROL REGISTER

This read/write register provides status information and software control of interrupts,
interrupt level, DMA, and the source of start pulses for the A/D.

4-5

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

Base + 9 Read/Write: Read or write the control register.

B7 B6 B5 B4 B3 B2 B1 BO

INTE L2 L1 LO X DMA S1 S0

INTE: This bit enables/disables AD12-16/16F generated interrupts.
1 = enabled, 0 = disabled.
L2-LO: These bits select the desired interrupt level:

L2 L1 LO IRQ LEVEL
0 0 0 None - disabled
0 0 1 None - disabled
0 1 0 IRQ2

0 1 1 IRQ3

1 0 0 IRQ4

1 0 1 IRQ5

1 1 0 IRQ6

1 1 1 IRQ7

X: This bit is a "don't care". It is good programming practice to set this bit to 0.

DMA: Direct memory access(DMA) transfers are enabled when B2 = 1 and disabled
when B2 = 0. Itis your responsibility to set up the DMA controller in the PC and
the page registers before enabling DMA on the AD12-16/16F.

S1and SO: These bits control the source of start pulses for the A/D.

S1 S0 A/D TRIGGER SOURCE

Software start only *
Rising external A/D start(IP0)
Counter/Timer 1 & 2 output

= A O
_\o><

* NOTE:Regardless of the state of S1 and S0, an A/D conversion
can always be initiated by a write to the Base Address.

COUNTER/TIMER REGISTERS

Base + 10 Write: This two-bit write-only register controls operation of the
Counter/Timer. The type 8254 counter/timer chip used contains three 16-bit counters.
Counters 1 and 2 are cascaded and driven by a 1 MHz or 10 MHz clock for periodic
triggering of the A/D. Periods of a few microseconds to in excess of an hour can be
programmed. Counter 0 is uncommitted and provides a gated 16-bit binary counter that
can be used for event or pulse counting, delayed triggering, or (in conjunction with other
channels) for frequency or period measurement.

4-6

ANALOG/DIGITAL I/0 CARD

AD12-16/16F

USER MANUAL

B7

B6

B5

B4

B3

B2

B1

BO

X

X

X

X

X

X

C1

Co

CO:

CO and the External A/D Start input (IPO) are ANDed so that CO enables

external triggers and counters 1 and 2 begin counting when both are high.
This allows the set up of a timer driven DMA or interrupt process and
subsequent enabling of operations either by software or by a signal on the
external A/D start line (IPO).

C1: C1in conjunction with the Counter O Input Gate at digital input IP2, controls
clock pulses to Counter 0. When both are high, an on-board
crystal-controlled 100 KHz clock source is connected to the counter. CLOCK
IN, GATE, and COUNTER OUT are all available at external connections. So,
if C1 is set low, the internal 100 KHz clock is disabled and an external clock
source can be applied using the CLOCK IN 0 pin. In this mode, Counter 0
can be used as an event counter. Or, if the GATE input is connected to a
time base (e.g. COUNTER 2 OUTPUT), Counter 0 can be used to determine
frequency.

Base + 12 Write/Read: Counter O read or write. When writing, this register is used to
load a counter value into the counter. The transfer is either a single or double byte
transfer, depending on the control byte written to the counter control register at Base
+ 15. If a double byte transfer is used, then the least-significant byte of the 16 bit value
is written first, followed by the most significant byte. When reading, the current count
of the counter is read. The type of transfer is also set by the control byte.

Additional information about the type 8254 counters is presentedin CHAPTER SEVEN:
COUNTER/TIMER OPERATIONS section of this manual. However, for a full
description of features of this extremely versatile IC, refer to the Intel 8254 data sheet.
The counter read/write registers are located as follows:

Base + 13 Write/Read: Counter 1 read or write. See description for Base + 12.

Base + 14 Write/Read: Counter 2 read or write. See description for Base + 12

Base + 15 Write: The counters are programmed by writing a control byte into a counter
control register at Base Address + 15. The control byte specifies the counter to be
programmed, the counter mode, the type of read/write operation, and the modulus. The
control byte format is as follows:

B7 B6 B5 B4 B3 B2 B1 BO

4-7

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

SC1 SCO RW1 RWO M2 M1 MO BCD

SCO0-SC1: These bits select the counter that the control type is destined for.

SC1 SCO Function
0 0 Program Counter 0
0 1 Program Counter 1
1 0 Program Counter 2
1 1 Read/Write Cmd.”

*NOTE: See CHAPTER SEVEN: COUNTER/TIMER OPERATIONS for more information.

RWO-RW1: These bits select the read/write mode of the selected counter.

RW1 RWO | Counter Read/Write Function

Counter Latch Command
Read/Write LS Byte

Read/Write MS Byte

Read/Write LS Byte, then MS Byte

A a0 0
- O -0

MO-M2: These bits set the operational mode of the selected counter.

MODE M2 M1 MO
0 0 0 0
1 0 0 1
2 X 1 0
3 X 1 1
4 1 0 0
5 1 0 1

BCD: Set the selected counter to count in binary (BCD = 0) or BCD (BCD = 1).

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

AD12-16/16F STANDARD DRIVER REFERENCE

PROGRAMMING USING THE DEVICE DRIVERS

Using direct register access to program the AD12-16/16F is straightforward but the
coding can be rather tedious. To assist you in building your application quickly, ACCES
provides two device drivers. The first driver is used when there is no AIM-16P sub-
multiplexer board attached. This driver is provided in three forms. Which form you use
will depend on the programming language you wish to develop your application with.

This section of the manual contains detailed information on the functions available in
the standard driver. The standard driver should be used when there is no sub-
multiplexer board attached to the AD12-16/16F. The driver provides a wide range of
functions that would take weeks of development time to create. The chapter is divided
into three sections, the first is a task summary, the second is the task reference and last
is an error code summary.

The driver in DOS only are:

A16DRV.BIN A BASIC loadable driver for use with most interpreted BASIC
languages.
A16DRV.OBJ A Pascal and QuickBASIC linkable driver in object form.

A16DRVC.OBJ A "C" linkable driver in object form.

The second driver is designed to be used when an AIM-16P sub-multiplexer board is
attached. This driver is significantly different from the first driver in its functionality. This
driver provides tasks that are unique to the AIM-16P, because of its thermocouple and
programmable gain capability. A task reference for this driver is provided in the
following chapter. The file names of the AIM-16P (in DOS only) driver and their
language uses are as follows:

AA16DRV.BIN A BASIC loadable driver for use with most interpreted BASIC
languages.

AA16DRV.OBJ A Pascal and QuickBASIC linkable driver in object form.

AA16DRVC.OBJ A "C"linkable driver in object form.

Also, to help you in understand how to use the driver with your program, sample
programs are provided in three languages; "C", Pascal, and QuickBASIC. The first
three samples are provided for both the standard driver and the AIM-16P driver. The
last two samples are provided for the standard driver only. The programs are:

SAMPLE 1 - Demonstrates data acquisition using polling.
SAMPLE 2 - Demonstrates timer-driven data acquisition using interrupts.
SAMPLE 3 - Demonstrates timer-driven data acquisition using DMA.

5-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

SAMPLE 4 - Demonstrates D/A conversion.
SAMPLE 5 - Demonstrates digital output.

To access the functions of the driver, a call to a single procedure within the driver is

used.

The name of the procedure for the standard driver is A16DRV, the name of the

procedure for the AD12-16/16F with AIM-16P is call AA16DRV. The procedure is
called with three variables, which are defined as follows:

task: The number of the task to perform. A reference with a list of tasks for

each driver follow for the standard driver and in the next chapter for
the AIM-16P driver.

parameters: This is an array of integers which contains information required by the

driver. The reference chapter for each task defines what values need
to be passed. The array should hold seven integers.

status: An error code is returned in this variable. A zero is returned if there

iS no error.

When calling the procedure, certain important requirements must be met:

A.

The variables must be declared as global. If they are not, the driver will not be
able to find their data segment. Most programming languages only use the data
segment for global variables, which is permanent storage. Variables declared
in procedures are usually allocated on the stack, which is temporary storage.

The driver expects parameters to be integer type variables and will write to and
read from the variables on this assumption. The driver will not function properly
if non-integer variables are used in the call.

. The variables should be passed by reference. The driver expects offsets of the

variables so that data may be returned when required.

. The passed variables are positional. That is, the variables must be specified in

the sequence (task, parameters, status). Their location is derived sequentially
from the variable pointers on the stack.

The driver will not function properly if arithmetic functions (+, -, x, etc) are
specified within the variable list bracket.

TASK SUMMARY

TASK 0: Initialize the card, set the base address, interrupt level, and the DMA

level.

5-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

TASK 1: Set the multiplexer low and high scan limit.

TASK 2: Return the next channel to be converted and the multiplexer scan limit
setting.

TASK 3: Perform a single A/D conversion. Return data and increment the
multiplexer address. Polled conversion, speed is slow and the operation
is foreground.

TASK4: Performan N-conversions scan. Data are transferred to an integer array.
Speed is medium and the operation is foreground.

TASK 5: Perform an N-conversions scan after trigger into a memory segment
using interrupts. Speed is medium and operation is in the background.

TASK 6: Perform an N-conversions scan after trigger into a memory segment
using DMA. Speed is fast and operation is in the background.

TASK 7: Disable DMA/Interrupt operation of Tasks 5, 6, 18, or 20.

TASK 8: Report status of DMA/Interrupt operation initiated by Tasks 5, 6, 18, or
20.

TASK 9: Transfer data from memory segment to integer array.

TASK 10: Set Counter 0 operating configuration.

TASK 11: Load Counter 0 data.

TASK 12: Read Counter 0.

TASK 13: Output to digital outputs OP0-OP3.

TASK 14: Read digital inputs IPO-IP3.

TASK 15: Output data to single D/A channel.

TASK 16: Output data to both D/A channels.

TASK 17: Set counter 1 and 2 rate.

TASK 18: D/A wave form output and A/D input, in A/D EOC interrupt.

TASK 19: Analog trigger function.

TASK 20: A/D block channel scan on Interrupt. Speed is medium and operation is

in the background.
TASK REFERENCE

The following

pages will provide details on the use of each of the driver's tasks. The

code fragments are written in the "C" programming language, but the code is mostly
assignments and the call to the driver, so it should not be difficult to translate into your

development

language.

Other methods of calling the driver are discussed at the end of this chapter starting on
page 28. Another detail that you should remember is how array indices are used in

your particula
reference. In

rlanguage. In “C”, the first element of an array is 0, as will be seen in the
Pascal, the first element of an array is whatever you made it in the type

declaration for that array. In BASIC or QuickBASIC, the first element should be a 1.

TASK 0: INITIALIZE

5-3

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

This task provides the driver with default information on I/O base address, interrupt level
and DMA channel. This task should be called once at the beginning of the program,
before any other tasks are called. If other tasks are called first, they will return error
code 2.

NOTES:
1) Default scan limits of 0 to 7 are set by this task if switch S3 is set in 8CH
position, otherwise the default will be 0 to 15.
2) Disables all interrupt, DMA, and external trigger functions.
3) Programmable interval timers 1 and 2 are configured for rate generator mode
and set to produce a 1 KHz pulse rate (10 KHz with a 10 MHz clock).

INPUT:
params[0]: Base Address
params[1]: Interrupt request level (IRQ)
params[2]: DMA channel

OUTPUT:
DATA: NONE
ERROR CODES:
status = 0: No error.
status = 2: Invalid task number, task > 20
status = 3: Invalid base address, params[0] > 0x3f0 or < 0x200
status = 4: Invalid interrupt level, params[1] <2 or > 7
status = 5: Invalid DMA channel, params[2] is not equal to 1 or 3
status = 22: Card not present or I/O base address set improperly
EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 0;
params[0] = 0x300; /* base address = 300 hex */
params[1] = 5; /* interrupt = IRQ5 */
params[2] = 3; /* DMA level 3 */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* callthe driver */

TASK 1: SET MULTIPLEXER SCAN LIMITS

This task sets the multiplexer scan limits for the A/D converter.

NOTES:
1) You should set the limits prior to a call to tasks 3, 4, 5, 6, 18, 20, if the default

5-4

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

2)

3)

4)

5)

limits set in task 0 are acceptable, then this task need not be called.

If the lower limit is greater than the higher limit, the multiplexer will scan starting
at the lower limit through the highest channel possible, then reset to 0 and scan
until the high limit is reached. For example, if params[0] = 13 and params|[1] =
2 the sequence would be 13-14-15-0-1-2-13-14-15-0-1-2-13-14 etc.

If you are using the card in the 8-channel differential mode, avoid setting the
lower limit greater than the upper limit because the counter will attempt to cycle
through channels 8 through 15.

If you wish to perform continuous conversions on only one channel, set the low
and high scan limits equal to each other.

Control of the multiplexer address is performed by high speed hardware on the
AD12-16/16F card and is independent of the processor. Approximately two
microseconds after the A/D has been triggered and the Sample/Hold amplifier
is holding the previous sample, the multiplexer is advanced to the next channel.
This allows the instrumentation amplifier to settle before the Sample/Hold
amplifier returns to the Sample state at the end of the 12-microsecond A/D
conversion (8 microseconds on AD12-16F). This pipelining technique optimizes
throughput of the system.

INPUT:
params[0]: Lower scan limit, O to 7 if differential or O to 15 if single ended, see

note 3.

params[1]: Upper scan limit, O to 7 if differential or O to 15 if single ended, see

note 3.

OUTPUT:
DATA: NONE
ERROR CODES:

status = 0: No error.

status = 1: Driver has not been initialized with task 0.

status = 2: Invalid task number, task > 20

status = 6: Differential scan limits are out of range, limits are not in 0 to 7 range.

status = 7: Single ended scan limits are out of range, limits are not in 0 to 15
range.

5-5

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

EXAMPLE:

int task,params[7],status; /* these are globally declared variables */
task = 1

params[0] = 2; /* lower scan limit is channel 2 */

params[1] = 15; /* upper scan limit is channel 15 */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 2: FETCH MUX SCAN LIMITS AND CURRENT CHANNEL

Determine the current multiplexer channel setting and scan limits.

NOTES:

1) If Task 2 is run during the 8-12 microsecond interval when the A/D is busy
and the multiplexer address is possibly being incremented, the task will wait
until the A/D has finished converting. Thus, the multiplexer address returned
always corresponds to the next channel to be converted.

INPUT: None.

RETURNS:
DATA:
params[0]: Channel address for next conversion, 0 through 15.
params[1]: Lower scan limit, O though 15.
params[2]: Upper scan limit, O though 15

ERROR CODES:
status =0: No error.
status = 1: Driver has not been initialized with task O.
status = 2: Invalid task number, task > 20

EXAMPLE:
int task,params|7],status; /* these are globally declared variables */

task =2
a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

5-6

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

TASK 3: PERFORM A SINGLE A/D CONVERSION

Perform a single A/D conversion triggered by software. The multiplexer is automatically
incremented after the conversion.

NOTES:

1) The A/D will perform conversions on channels according to the scan limits set
in either Task 0 or Task 1.

2) Task 3 is the only task that allows A/D conversion to be initiated on software
command. Itis slow because it is limited by program execution speed which, for
interpreted BASIC, can takes several milliseconds per line of code. A tightloop
will perform about 200 conversions per second on a 4.77 MHz PC. If compiled
BASIC is used, about 4000 samples per second can be obtained ona 4.77 MHz
computer.

INPUT: None.

RETURNS:
DATA:
params[0]: A/D data (0 to 4095 if unipolar, -2048 to 2047 if bipolar).
params[1]: Channel number, (0 to 7 if differential or 0 to 15 if single ended).

ERROR CODES:
status =0: No error.
status = 1: Driver has not been initialized with task O.
status = 2: Invalid task number, task > 20
status =9: No end of conversion, a timeout occurred indicating a hardware
failure.

EXAMPLE:
int task,params|7],status; /* these are globally declared variables */

task = 3;
a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* callthe driver */

TASK 4: DO N A/D CONVERSIONS USING POLLING

Perform N conversions and store the results in an array.

NOTES:
1) Since the CPU is performing the A/D polling and data transfers as a foreground
operation, exit from the driver will not occur until all conversions are completed.
To abandon further conversions, you may press any key at the keyboard and the
system will return to the calling program. If you do not want to wait for data to

5-7

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

2)

3)

4)

5)

be collected, consider Tasks 5 or 6 wherein data are gathered as a background
operation and you can collect and process data at the same time.

The A/D will perform conversions on channels according to the scan limits set
in either Task 0 or Task 1.

You must dimension a receiving array that has at least as many elements as the
number of conversions specified by params[0]. No checks are made by the
driver on whether you are requiring more conversions than the array will hold.
If you do, other areas of computer memory may be corrupted causing
unpredictable computer behavior.

If using BASIC, after assigning the pointer to the receiving array, do not
introduce any new simple variables before entering the CALL. A problem would
arise because of the way that BASIC stores array variables. They are located
in memory above the data area for simple (non-array) variables which, in turn,
is located above the program storage area. If you introduce a simple variable
that has not been used before, BASIC makes room for this variable by
re-locating all the variables upwards in memory. If you assign the pointer (using
VARPTR) to the receiving array before a new variable is introduced and then
enter the CALL, the actual location of the array will have changed and the CALL
routine will write data to the old array location causing unpredictable computer
behavior.

Conversion rates in excess of 2000 conversions per second are attainable using
this task. Since interrupts in the computer (mainly the timer interrupt) divert the
CPU away from attending to transferring data from the A/D for several hundred
microseconds, data may be lost above 3000 samples per second.

INPUT:
params[0]: Number of conversions to make.
params[1]: Offset of a data array to store counts read.
params[2]: Trigger source:

0: External trigger input. Conversions start on positive transitions of the IPO
input and continue until the conversion count is reached. NOTE: Exit
from the routine cannot take place until a number of pulses equal to the
word count have been applied.

1: Programmable interval timer. In this case, IPO should be held low until
you want to start conversions. After IPO goes high, this input will have no
further effect. Exit occurs when the word count is released. Conversions
start on each positive transition of the output of counter 2, therefore you
must set up counters 1 and 2 using Task 17.

RETURNS:
DATA.

The array whose offset was passed in params|[1] will contain the conversions.
The upper 12 bits contain the counts, which are from 0 to 4095 regardless of
polarity. The lower 4 bits contain the channel number.

5-8

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task O.
status = 2: Invalid task number, task > 20
status = 11: Number of conversions is 0 or negative.
status = 19: Trigger mode is not 0 or 1.
EXAMPLE:
int task,params[7],status,datbuf[100];/* these are globally declared variables */
task = 4;
params[0] = 100; /* number of conversions */
params[1] = FP_OFF(datbuf); [* passes offset to driver */
params[2] = 1; /* use timers for conversion pulses */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* callthe driver */

TASK 5: DO N A/D CONVERSIONS USING INTERRUPT

Perform N conversions and store the results in a specified segment of memory using
interrupts. This is a background task.

NOTES:

1)
2)

3)

4)

5)

The A/D will perform conversions on channels according to the scan limits set
in either Task O or Task 1.

You may not re-install the interrupt handler if the interrupt is still active. (Error
20 will result.) If you use the recycle mode, which generates continuous
interrupts, then Task 7 which disables interrupts must be run before you can
successfully run Task 5 again. If you are using the non-recycle mode, then Task
5 must have reached the word count (which automatically disables interrupts),
or disable the operation with Task 7 before Task 5 can be run again.

The segment registers are not incremented by the handler, therefore the
maximum data area available is 64K (a page) for 32,767 conversions. Be sure
that your data area is not in use by your program or altered by subsequent
operations. Data may be retrieved by Task 9 during or after Task 5 operation
and will not alter the memory.

On completion of an interrupt operation, the selected level of the 8259 interrupt
mask register is disabled and the tristate interrupt drivers of the AD12-16/16F
are placed in the high impedance state. This allows multiple AD12-16/16F's to
use the same interrupt level as long as they do so sequentially. Note that any
old interrupt vectors are not restored by the driver after AD12-16/16F has
finished using the interrupt.

Conversion speeds up to 3000 samples per second using a 4.77 MHz PC can
be reliably achieved using Task 5. For higher speeds, use Task 6. Task 5 is
subject to disruptions from higher priority interrupts (notably from the system
timer) and this is the main limitation on throughput. In general, Task 6 is a better

5-9

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

choice than Task 5 at any speed because it uses much less processing time.
6) If you are using the programmable interval timer, note that you cannot exit from
Task 5 until the signal at IPO is taken high.

INPUT:
params[0]: Number of conversions to make.
params[1]: Segment of memory to place data, must be unused.
params[2]: Trigger source:

0: External trigger input. Conversions start on positive transitions of the IPO
input and continue until the word count is reached.

1: Programmable interval timer. In this case, IPO should be held low until
you want to start conversions. After IPO goes high, this input will have no
further effect. Conversions start on each positive transition of the output
of counter 2, therefore you must set up counters 1 and 2 using Task 17.

params[3]: Cycle/Recycle operation:

0: One cycle. After completion of the number of conversions specified,
interrupts are disabled and operation status is set to zero.

1: Recycle. Data are continuously written to the same memory. params[0]
corresponds to the memory buffer length. Operation will continue until
stopped by Task 7.

RETURNS:
DATA:
Data are stored in the segment address passed, starting at offset 0. The data
may be converted and placed in an array by using task 9.

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task 0.
status = 2: Invalid task number, task > 20
status = 11: Number of conversions is 0 or negative.
status = 19: Trigger code not 0 or 1.
status = 20: Interrupt or DMA already active.
status = 26: Invalid memory segment.
status = 27: Recycle code not 0 or 1.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

EXAMPLE:
int task,params[7],status; /* globally declared variables */
task = 5;
params|[0] = 100; /* number of conversions */
params[1] = 0x5000; [* passes data segment to driver, should be unused! */
params|[2] = 1; [* use timers for conversion pulses */
params[3] = 0; /* do one cycle only. */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* callthe driver */

TASK 6: DO N A/D CONVERSIONS USING DMA

Perform N conversions using DMA and store the results in a specified segment of
memory.

NOTES:

1)

2)

3)

4)

5)

6)

DMA is performed purely by the system and the AD12-16/16F, is a background
operation, and is very fast. Throughput is limited mostly by the settle time of the
Sample/Hold amplifier and the A/D converter. The AD12-16 can provide a
maximum of about 60,000 conversions per second. The AD12-16F uses a faster
A/D converter and can sustain a throughput slightly over 100,000 conversions
per second.

The A/D will perform conversions on channels according to the scan limits set
in either Task 0 or Task 1.

You may not re-install the DMA task if the DMA task is still active. (Error 20 will
result.) If you use the recycle mode, which generates continuous DMA, then
Task 7, which disables DMA must be run before you can successfully run Task
6 again. If you are using the non-recycle mode, then it must have reached the
word count (which automatically disables DMA), or disable the operation with
Task 7 before Task 6 can be run again.

The segment registers are not incremented by the handler, therefore the
maximum data area available is 64K (a page) for 32,767 conversions. Be sure
that your data area is not in use by your program or altered by subsequent
operations. Data may be retrieved by Task 9 during or after Task 6 operation
and will not alter the memory.

On completion of an interrupt operation, the selected level of the 8259 interrupt
mask register is disabled and the tristate interrupt drivers of the AD12-16/16F
are placed in the high impedance state. This allows multiple AD12-16/16F's to
use the same interrupt level as long as they do so sequentially. Note that any
old interrupt vectors are not restored by the driver after AD12-16/16F has
finished using the interrupt.

Upon completion of a DMA operation, the tristate DMA request drivers of the
AD12-16/16F are placed in the high impedance state. This allows more than
one AD12-16/16F to use the same DMA level as long as they do so sequentially.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

7) If you are using the programmable interval timer, note that you cannot exit from
Task 5 until the signal at IPO is taken high.

INPUT:
params[0]: Number of conversions to make.
params[1]: Segment of memory to store data.
params[2]: Trigger source:

0: External trigger input. Conversions start on positive transitions of the IPO
input and continue until the word count is reached.

1: Programmable interval timer. In this case, IPO should be held low until
you want to start conversions. After IPO goes high, this input will have no
further effect. Conversions start on each positive transition of the output
of counter 2, therefore you must set up counters 1 and 2 using Task 17.

params[3]: Cycle/Recycle operation:

0: Onecycle. After completion of the number of conversions specified, DMA
is disabled and operation status is set to zero.

1: Re-cycle. Data are continuously written to the same memory. params[0]
corresponds to the memory buffer length. Operation will continue until
stopped by Task 7.

RETURNS:
DATA:
The data is stored in the segment address passed, starting at offset 0. The data
may be converted and placed in an array by using task 9.

ERROR CODES:
status =0: No error.
status = 1: Driver has not been initialized with task 0.
status = 2: Invalid task number, task > 20
status = 11: Number of conversions is 0 or negative.
status = 19: Trigger code not O or 1.
status = 20: Interrupt or DMA already active.
status = 21: Segment page wrap around error.
status = 26: Invalid memory segment.
status = 27: Recycle code not 0 or 1.

EXAMPLE:
int task,params(7],status; /* these are globally declared variables */
task = 6;
params|[0] = 100; /* number of conversions */
params[1] = 0x5000; /* use segment 5000, should not be used */
params|[2] = 1; [* use timers for conversion pulses */
params[3] = 0; /* do one cycle only. */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

5-12

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

TASK 7: TERMINATE DMA/INTERRUPT OPERATION

Terminates any running interrupt or DMA operation initiated by tasks 5, 6, 18, or 20.
NOTES: None.
INPUT: None.

RETURNS:
DATA: None.

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task O.
status = 2: Invalid task number, task > 20

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */

task = 7;
a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 8: FETCH DMA/INTERRUPT OPERATION STATUS

Fetches the status of background tasks 5, 6, 18, 20.
NOTES: None.
INPUT: None.

RETURNS:
DATA:
params[0]: Operation type
0 = None
1 = DMA (Task 6)
2 = Interrupt (Task 5)
3 = Interrupt (Task 18)
4 = Interrupt (Task 20)
params[1]: Status of operation
0 = Done
1 = Active (in progress)
params[2]: Number of conversions completed so far.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task 0.
status = 2: Invalid task number, task > 20
EXAMPLE:
int task,params|[7],status; /* these are globally declared variables */

task = 8;
a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */
if (params[0] == 0) puts("background task complete");

TASK 9: TRANSFER DATA FROM MEMORY TO ARRAY

Takes data from a memory segment and extracts the channel and data, and places
each into its own array.

NOTES:

1)
2)

3)

4)

o)

6)

Do not transfer more words than an array will hold. The driver has no way to
detect this condition which could cause system lockups or crashes.

Due to data re-formatting that this Task performs, it is not a general-purpose
block-move utility.

If using BASIC, it is advisable to make the data array and channel array assign-
ments just before the CALL statement because declaring a new simple variable
after making this assignment will dynamically relocate the arrays and upset
operation of this task.

If you don't need channel data, set params[4] = 0 and channel data will be
suppressed.

Once data acquisition has been set up as a background operation using the
recycle options of Tasks 5 or 6, a foreground program can be processing the
data as soon as acquired using Task 9 to retrieve the data. This is excellent for
graphic or "digital oscilloscope" applications.

As an alternative to Task 9, you may be tempted to retrieve data using BASIC's
PEEK function. Since PEEK retrieves data a byte at a time, if interrupt transfers
are active, itis possible that an interrupt can occur between reading the low byte
and the high byte of a data word thereby changing the halves of a word in mid-

flight and causing your time-sequential PEEK's to return erroneous data. Use of
Task 9 avoids this problem.

INPUT:
params[0]: Number of words to transfer.
params[1]: Source memory segment to transfer from.
params[2]: Starting position within source segment.

5-14

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

params[3]: Offset of destination data buffer.
params[4]: Offset of destination channel buffer.

RETURNS:
DATA:
The data array will contain the counts. The count range will be from 0 to 4095
if the card is in the unipolar mode, or from -2048 to 2047 if the card is in the
bipolar range.

The channel array will contain the channel number, 0 to 15 if the card is in the
single ended mode or 0 to 7 if in the differential mode.

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task 0.
status = 2: Invalid task number, task > 20
status = 18: Transfer count, params[2] is zero or negative.
status = 26: Invalid memory segment.

EXAMPLE:
int task,params[7],status; [* these are globally declared variables */
int datbuf[100],chnbuf[100]; /* these are globally declared variables */

task = 9;

params|[0] = 100; /* number of conversions */
params[1] = 0x5000; /* passes segment to copy from */
params|2] = 0; [* starting position in segment is 0*/

params[3] = FP_OFF(datbuf); [* pass offset of data buffer */
params[4] = FP_OFF(chnbuf) [* pass offset of channel buffer */
a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 10: SET COUNTER 0 MODE

Sets the operating mode of counter 0.

NOTES:

1) Counters 1 and 2 can also operate in any of these modes but this is not
supported by the driver. Counters 1 and 2 are set by Task 0 (initialize) to
operate as divide-by-N counters as this is the best configuration for triggering the
A/D. To change their mode, use the direct outportb instructions, or your
language's equivalent .

INPUT:

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

params[0]: Counter operating mode.

0. Pulse on terminal count: Output low on trigger, goes high on terminal count.
1. Programmable one-shot: Output pulses low for one clock time on terminal
count.
2. Rate generator or divide-by-N counter: Output pulses low every terminal
count.
3. Square wave generator: Output high for one-half of the count and low for the
other half.
4. Software-triggered strobe: Output pulses low on terminal count after loading.
5. Hardware-triggered strobe: Output pulses low on terminal count.
RETURNS:
DATA: None.
ERROR CODES:

status = 0: No error.

status = 1: Driver has not been initialized with task O.
status = 2: Invalid task number, task > 20

status = 12: Counter mode number out of range 0 to 5.

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 10;
params|[0] = 2; /* set counter O to rate generator mode */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 11: LOAD COUNTER 0

Sets the operating mode of counter 0.

NOTES:

1) Since the counter is a 16-bit device, counts as high as 65,535 are possible. In
BASIC, integer variables are signed 16-bit words; i.e., can have values between
-32,767 and +32,767. To load a number larger than 32,767, set the integer
variable to X - 65,536. For example, 40,000 would be entered as -25,536.

2) If Task 10 has not been entered prior to Task 11, the mode will default to #0
which is suitable for pulse and event counting.

INPUT:

params[0]: Counter O load value

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

RETURNS:
DATA: None.

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task O.
status = 2: Invalid task number, task > 20

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 10;
params[0] = 10000; [* set counter O load value */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 12: READ COUNTER 0

Reads the current count of counter 0.

NOTES:

1) Since the counter is a 16-bit device, counts as high as 65,535 are possible. In
BASIC, integer variables are signed 16-bit words; i.e., can have values between
-32,767 and +32,767. If a negative number is returned, you may convert it to the
proper positive value by adding 65,536 to it. For example, if -8000 is returned,
add 65,536 to it to get 57,536.

2) Read type 0 does not latch the counter. Therefore, if the counter is still running,
an erroneous count may result. Use read type 1 in these situations.

3) Neither type of read will affect counter data or operation.

INPUT:
params[0]: Counter read type:
0: Read without latch while counter is running.
1: Counter is latched before reading.

RETURNS:
DATA:
params[1]: Contains the count read.

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task O.
status = 2: Invalid task number, task > 20.
status = 16: read operation number is not O or 1.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 12;
params|[0] = 1; [* latch counter before read */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 13: WRITE DIGITAL OUTPUT BITS

Writes a value to digital output bit OPO through OP3.

NOTES:
1) The value written may be 0 to 15. This represents a four bit binary value, with
each bit position corresponding to one digital output bit. A 1 output sets OPO
high, and the rest low, a 3 output sets OP0O and OP1 high and the rest low.

INPUT:
params[0]: Value to write to digital output bits.

RETURNS:
DATA: None.

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task 0.
status = 2: Invalid task number, task > 20.
status = 13: Digital output value not in range 0 to 15.

EXAMPLE:
int task,params[7],status; [* these are globally declared variables */
task = 13;
params[0] = 15; /* set all digital output bits high */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* callthe driver */

TASK 14: READ DIGITAL INPUT BITS

Read the status of digital input bits IPO through IP3.

NOTES:

1) The value read may be 0 to 15. This represents a four bit binary value, with
each bit position corresponding to one digital input bit. A 1 read means that IPO
is high, and the rest low, a 3 read means that IPO and IP1 are high and the rest
low.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

INPUT: None.

RETURNS:
DATA:
params[0]: Value read from the digital output bits.

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task 0.
status = 2: Invalid task number, task > 20.

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */

task = 14;
a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* callthe driver */
printf("The digital input bits read %d.",params[0]);

TASK 15: WRITE VALUE TO A SINGLE D/A CONVERTER

Writes a value to a given D/A converter.

NOTES: None.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

INPUT:
params[0]: D/A channel to write to, 0 or 1.
params[1]: Write value, 0 to 4095.

RETURNS:
DATA: None.

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task O.
status = 2: Invalid task number, task > 20.
status = 14: D/A data out of range, not between 0 and 4095.
status = 15: D/A channel not O or 1.

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 15;
params[0] = 1; /* write to D/A channel 1 */
params[1] = 2047, [* write half scale to this channel */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 16: WRITE TO BOTH D/A CONVERTERS

Performs a near simultaneous write to both D/A channels.

NOTES:
1) This task is an alternative to entering Task 15 twice in succession and is useful
to drive X/Y plotters, resolvers, analog controllers, etc. where the delays using
Task 15 twice in succession would not produce ideal responses.
2) If an error is detected in either channels' load value, neither channel will be
updated.

INPUT:
params[0]: Channel 0 write value, 0 to 4095.
params[1]: Channel 1 write value, 0 to 4095.

RETURNS:
DATA: None.

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task O.
status = 2: Invalid task number, task > 20.

5-20

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

status = 14: D/A data out of range, not between 0 and 4095.

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 16;
params[0] = 1024; [* write 1/4 scale to channel 0 */
params[1] = 2047, [* write 1/2 scale to channel 1 */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* callthe driver */

TASK 17: SET COUNTER 1 AND 2 RATE

Sets the division ratios for Counter 2 and Counter 1 to produce a programmable output
pulse rate for triggering the A/D.

NOTES:

1)

2)

3)

The counter input clock frequency may be 1 MHz or 10 MHz as selected by a
jumper on the card. Use the following computation to determine the counter
frequency in hertz.
a. 1,000,000 /(counter 2 load * counter 1 load) when the clock frequency
jumper is in the 1 MHz position.
b. 10,000,000 /(counter 2 load * counter 1 load) when the clock frequency
jumper is in the 10 MHz position.
Counters 1 and 2 are set to divide-by N (mode 2) and to output 1 KHz (10 KHz
if jumpered for 10 MHZ clock) by the initialization sequence of Task 0.
The minimum divisor for either counter is 2, the maximum is 65,535. Thus
possible pulse rates are 250 KHz to less than one pulse per hour with a 1 MHZ
clock and tentimes those rates with a 10 MHz clock input. If you wish to perform
conversions in the 10-100 KHz range, use of the 10 MHz will give a greater
choice of selectable rates because the clock frequency is divided by the product
of two integers.

INPUT:
params[0]: Counter 2 load value.
params[1]: Counter 1 load value.

RETURNS:
DATA: None.

5-21

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

ERROR CODES:

status = 0: No error.

status = 1: Driver has not been initialized with task O.
status = 2: Invalid task number, task > 20.

status = 10: A counter has a divisor of 1 or 0.

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 17;
params|[0] = 10; /* Set the tow counters to */
params[1] = 1000; /* divide by 10000 */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* callthe driver */

TASK 18: D/A OUTPUT ON A/D EOC

Uses the EOC interrupt to time the outputs to the D/A converter. Optionally, if an
address to an array is passed, the values converted by the A/D are returned.

NOTES:

1)

2)

3)

4)

5)

6)

7)

8)

The A/D converter is triggered by the on-board interval timer. The resulting
EOC's will provide periodic interrupts delayed eight to twelve microseconds
(depending on A/D conversion time) from the timer pulse.

Channel scan limits and interrupt rate from the timer are set independently
preceding this task using Tasks 1 and 17.

Speed is dependent on the rate at which interrupts can be processed and varies
according to the type of hardware and CPU clock rate. Typically, with a 4.77
MHz clock, interrupt rates approaching 4 KHz are possible. Due to the use of
interrupts, D/A update has variable latency delays of several microseconds
which can be improved by suppressing other higher-priority interrupts such as
the computer's timer interrupt on level 0.

If using BASIC, it is advisable to make the data array assignments just before
the CALL statement because declaring a new simple variable after making this
assignment will dynamically relocate the arrays and upset operation of this task.
Digital input IPO is polled before enabling interrupts. If IPOis held low by external
hardware, this will hold off the start of D/A output until IPO is taken high. Thus,
you can hardware-gate Task 18.

Once interrupts have been initiated by Task 18, they will run as a background
operation until the number of output cycles specified have been performed. If
you wish to terminate Task 18 before then, use Task 7. Task 8 can be used to
determine the status of a Task 18 operation.

This provides for stimulus/response type testing where the D/A outputs a signal
and the A/D measures the result.

The output and input can be set either to transfer a series of values from an
array as a single shot operation, to transfer the whole array for any number of

5-22

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

cycles up to 65,535, or to continuously transfer. That latter mode is useful for
wave form generation.

INPUT:
params[0]: D/A Channel number, 0 or 1.
params[1]: Number of D/A conversions to transfer, 1 to 32767.
params[2]: Number of cycles to make, 0 = continuous.
params[3]: D/A data array offset.
params[4]: A/D data array offset, 0 is no array.

RETURNS:
DATA:
If an offset was passed in params[4], then the data array whose offset was
passed will have the packed A/D conversion. The lower four bits will contain the
channel number and the upper 12 bits will contain the counts.

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task 0.
status = 2: Invalid task number, task > 20.
status = 15: D/A channel number not 0 or 1.
status = 11 Conversion count not between 1 and 32767.
status = 20 Interrupt already active.

EXAMPLE:
int task,params[7],status; [* these are globally declared variables */
int DAout[10] = {0,0,0,0,0,4095,4095,4095,4095,4095}; /* also global */

task = 18;

params|[0] = 1; [* use D/A channel 1 */
params[1] = 10; [* cycle continuously */
params[3] = FP_OFF(DAout); [* pass this to driver */
params[4] = 0; /* do not use AD data */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* callthe driver */

5-23

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

TASK 19: ANALOG TRIGGER

Waits for a given A/D input to reach a certain level and then exits.

NOTES:

1) This task is useful for data compression. Forinstance, if you are only interested
in values above or below a certain level, this task may be used to sense this
condition. Upon return from this task, you may start your conversions.

2) ltis possible to get stuck in the wait loop indefinitely if the trigger conditions are
not met. You can exit this task by pressing any key.

3) Since this task requires use of the AD12-16/16F multiplexer scan setting register
at Base Address +2 for selection of the trigger channel, the previous value of this
register is saved and restored upon exit.

4) The slope parameter controls the direction of triggering. For example, if
params[1]=1024 on the % 5V range, the trigger level will be +2.5V and, if
params[2]=0 (positive slope), triggering will take place when the signal exceeds
+2.5V. Alternatively, if params[2]=1 (negative slope), then triggering will occur
whenever the triggering signal drops below +2.5V.

INPUT:
params[0]: A/D channel number, 0 to 7 in differential mode, 0 to 15 if single ended.
params[1]: Trigger level, 0 to 4095 if unipolar, -2048 to 2047 if bipolar.
params[2]: slope, 0 = positive, 1 = negative.

RETURNS:
DATA: None.

ERROR CODES:

status =0: No error.

status = 1: Driver has not been initialized with task O.

status = 2: Invalid task number, task > 20.

status = 23; Trigger channel out of range, not between 0 and 7 if differential
mode or between 0 and 15 if single ended mode.

status = 24; Trigger level out of range, not between 0 and 4095 if unipolar or
between -2048 and 2047 if bipolar.

status = 25; Slope not 0 or 1.

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 19;
params[0] = 1; /* use A/D channel 1 */
params[1] = 1024; [* set trigger level to 1/4 scale unipolar */
params[2] = 0; /* positive slope */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* callthe driver */

5-24

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

TASK 20: A/D CHANNEL SCAN ON INTERRUPT

Scans all A/D channels set by task 1 upon interrupt trigger.

NOTES:

1) This task operates similarly to Task 5 except that instead of performing a single
A/D conversion on each trigger pulse, a complete scan of the channels specified
by the scan limits set in Task 1 is performed. Task 20 installs an interrupt
handler to perform this function.

2) Due to the execution delays of the interrupt handler, 16-channel block scan rates
are limited to about 500 16-channel scans per second ona 4.77 MHz PC. If you
only scan four channels, then 2000 scans per second would be possible. Better
performance can be expected on Turbo XT's and on AT's.

3) During the block scan, channels in a 4.77 MHz PC are sampled at about 100
microsecond intervals, but other interrupts may produce variable delays in the
scan rate. If this is a problem, you can suppress other interrupts (especially the
PC timer interrupt) while data are collected using Task 20.

4) There are two possible A/D trigger sources; external trigger inputs and the
programmable interval timer. If you start missing channels or if the foreground
program slows to a crawl, you will know that you are operating close to the
maximum interrupt rate.

INPUT:
params[0]: Number of conversions required, 1 to 32,767. This is not number of
scans!
params[1]: Memory segment to place conversions.
params[2]: Trigger source:

0: External trigger input. Conversions start on positive transitions of the IPO
input and continue until the word count is reached.

1: Programmable interval timer. In this case, IPO should be held low until
you want to start conversions. After IPO goes high, this input will have no
further effect.

params[3]: Cycle/Recycle operation:

0: One cycle. After completion of the number of conversions specified,
interrupts are disabled and operation status is set to zero.

1: Re-cycle. Data are continuously written to the same memory. params[0]
corresponds to the memory buffer length. Operation will continue until
stopped by Task 7. Conversions start on each positive transition of the
output of counter 2, therefore you must set up counters 1 and 2 using
Task 17.

RETURNS:
DATA:

5-25

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

The memory segment specified will contain the packed data with the channel
number in the lower four bits and the count in the upper 12 bits.

ERROR CODES:
status = 0: No error.
status = 1: Driver has not been initialized with task O.
status = 2: Invalid task number, task > 20.
status = 11: Number of conversions zero or negative.
status = 19: Trigger type not O or 1.
status = 20: Interrupt already active.
status = 26: Invalid memory segment.

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 20;
params|[0] = 100; /* make 100 conversions (not scans) */
params[1] = 0x5000; /* segment of memory to store conversions */
params|2] = 0; [* external trigger */
params[3] = 0; /* do one cycle only */

a16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

5-26

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

QRN

N

10:
: Number of conversions negative.
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

11

24
25:
26:
27

SUMMARY OF ERROR CODES

Driver not initialized. Task 0 must be performed before attempting any other task.
Task number out of range. Must be Task 0 through 20.

Base address out of range. Must be between hex 200 and hex 3FO.

Interrupt level out of range. Must be between 2 and 7.

DMA level must be 1 or 3.

Multiplexer scan limits out of range for differential configuration. Must be between
Oand?7.

Multiplexer scan limits out of range for single-ended configuration. Must be between
0 and 15.

Not Used.

A/D timeout error (hardware error, no EOC).

Counter division ratios cannot be 0 or 1.

Counter mode out of range. Must be between 0 and 5.

Digital output data out of range. Must be between 0 and 15.

D/A data out of range. Must be between 0 and 4095.

D/A channel number out of range. Must be 0 or 1.

Counter read operation must be 0 or 1.

Start convert number is a negative number.

Word count must be a positive number greater than zero.

Trigger mode must be either 0 or 1.

DMA/Interrupt operation already active.

DMA page wrap around.

Hardware failure or installation error (Base address set wrong).

Trigger channel inconsistent with configuration. Must be between 0 and 7 for
differential or between 0 and 15 for single-ended.

Trigger source out of range.

Slope data must be 0 or 1.

Bad segment address; Segment of data buffer passed to driver was too large.
Bad cycle flag: Value passed to driver to indicate continuous or single pass was
invalid.

5-27

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

USING THE DRIVER WITH TURBO OR BORLAND C

The following list shows you how to use the driver with Borland or Turbo C. You may
refer to any of the C example programs for further illustration. Make sure that you use
the proper driver name where required depending on which of the two drivers you use.

A.

G.

Include the AA16DRVC.h or A16DRVC.h header in your program. This simple
header provides a function prototype of the procedure call.

#include "aa16drvc.h"
Declare the three variables for the driver globally.
int task,params[7],status;

Make your assignment to these variables as desired for the function you wish to
perform. See the reference sections for details on each task.

Make the call to the driver, passing the offset of each parameter.

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(status));

. Create a project file within the Turbo C environment, and add the name of your

program with the .C extension, and the name of the driver with a .OBJ extension.
You may use the .CPP extension if you desire to work in C++.

Select "LARGE" memory model under the compiler section of the options
menu.

Compile and link the program.

USING THE DRIVER WITH MICROSOFT C

To use the driver with Microsoft C version 6.0, add the following code to your application
code as shown below:

_asm
{

push DS

mov AX,ES

mov DS,AX
}

[* call driver as normal */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(status));

5-28

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

_asm

{
pop DS

}

If you are using a version of Microsoft C prior to version 6.0 use the following code:

_asm _emit OX1E

_asm _emit 0x86

_asm _emit 0xCO

_asm _emit Ox8E

_asm _emit 0xD8

[* call driver as normal */
aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(status));

_asm _emit Ox1F

These changes work around a peculiarity of Microsoft C, enabling our drivers to locate the
variables used in the program.

USING THE DRIVER WITH TURBO PASCAL
The following procedure will show you how to use the driver with Turbo Pascal. You may
refer to any of the Pascal example programs for further illustration. Make sure that you use
the proper driver name where required depending on which of the two drivers you use.
A. Include the following compiler directive at the beginning of your program.
{$L aa16drv}
B. Declare the three variables for the driver globally.
type param_array = array[1..7] of integer;
var params : param_array;
task,status : integer;
C. Declare the driver function as external in using a prototype declaration.
procedure aa16drv(task:word; param:word; status:word);external;
D. Make your assignment to these variables as desired for the function you wish to
perform. See the reference sections for details on each task.

E. Make the call to the driver.

5-29

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

aa16drv(ofs(task),ofs(params),ofs(status));
F. Compile and link the program.
USING THE DRIVER WITH QUICKBASIC

The following procedure will show you how to use the driver with Microsoft QuickBASIC.
You may refer to any of the QuickBASIC sample programs for further illustration. Make
sure that you use the proper driver name where required depending on which of the two
drivers you use. The following procedure will allow you to use the driver both in the
QuickBASIC environment and from the command line compiler.

A. Declare the three variables for the driver as global.
DIM TASK%, STAT%, PARAMS%(7)

B. The array dimension statement must be followed by the COMMON statement for the
driver to be able to find the array. Note: Steps A and B are necessary for any array
that will be used by the driver. Certain tasks within the driver required the address
of a data buffer, so these two steps would need to be performed for those arrays as
well.

COMMON SHARED PARAM%()

C. Now DECLARE the driver routine. This declaration must include a BYVAL
statement before the array variable.

DECLARE SUB A16DRV(TASK%, BYVAL PARAM%, STAT%)

D. Make your assignment to these variables as desired for the function you wish to
perform. See the reference section on each task for details.

E. Make the call to the driver. The CALL statement must explicitly pass the offset of
the array variable.

CALL A16DRV(TASK%, VARPTR(PARAM%(1)), STAT%)

F. To use the program and driver in the environment, you must link a Quick Library.
Perform the following command from the command line.

LINK /Q A16DRV.OBJ,A16DRV.QLB,,BQLB45.LIB; [ENTER]

G. Now load the Quick Library when starting the environment.

5-30

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

QB /L A16DRV.QLB [ENTER]
H. Use the start command from the run menu to execute the program.
|. To prepare an EXE file from the command line, use the following compile and link
commands.

BC /o YOURPROG;[ENTER]
LINK YOURPROG+A16DRV;[ENTER]

5-31

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

(This page purposely omitted)

5-32

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

AD12-16/16F WITH AIM-16P DRIVER REFERENCE

This chapter provides detailed information on the functions available from the AD12-16/16F
with AIM-16P driver. The chapter is divided into four sections, the first is a section detailing
the use of this driver. The second is a task summary, third is the task reference and last
is an error code summary.

USING THE DRIVER
HARDWARE INFORMATION

The following should be considered when using this driver.

1) The AIM-16P rather then the AIM-16 must be used. Because the AD12-16/16F
does not supply £12 volts to the external connector, the AIM-16P has an on board
115 volt power supply.

2) The cable connection between the AD12-16/16F and the AIM-16P requires a special
cable adapter, ACCES part number CA37. The connection diagram for this cable
adapter is given in APPENDIX B for those who wish to build their own.

3) Digital inputs bits IP1, IP2 and IP3 on the AD12-16/16F must be converted to digital
outputs using jumpers D5, D6 and D7 if the programmable gain feature of the AIM-
16P is to be used. If not, these bits may be used as desired.

THE POINT LIST CONCEPT

Most functions of this driver work with a point list. The point listis a list of point addresses
in the order that you desire to have conversions performed. A point address is a number
specifying the channel of the AD12-16/16F and the AIM-16P. The first 16 point addresses
(0-15) refer to the AIM-16P channels for the AIM-16P attached to channel 0 of the AD12-
16/16F. The second 16 point addresses (16-31) refer to the 16 channels of the AIM-16P
attached to channel 1 of the AD12-16/16F, and so on. Thus, with 16 single ended A/D
channels, a point address may be as large as 255.

You may install point addresses into the point list in any order, or with multiple entries for
the same point address. For example the order could be 15-12-12-11-9-255-1-1-0 etc.
The order that point addresses are installed in the point list is the order in which you call
the driver to install them. Each new entry is appended to the end of the list.

A point list index is used by the driver to keep track of which point address is the next to be
converted. After each conversion the index is incremented to the next position in the list.
When the index reaches the top of the list it is automatically set to the beginning of the list.
If you desire to set the list index to the top of the list at any time, you may use TASK 11.

The point list is dynamic. During program operation, if you desire to clear the point list and
add a different set of points, this is done quite easily using the tasks provided.

6-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

The main advantages of a point list are that conversions can be done in any order and the
driver takes care of setting the AIM-16P channel and the AD12-16/16F channel, as well as
gains, linearization and scaling.

OTHER SOFTWARE FEATURES

The driver provides the ability to use the programmable gain feature of the AIM-16P. You
may assign gains to a given point address directly. Each point address may have its own
gain code associated with it. This is useful when differing input ranges are desired using
the same AIM-16P.

The driver also provides the ability to make a function assignment to each individual point
address. You may assign a thermocouple curve or a scaling range to a point address.
Look up tables are contained in the driver to convert counts to the proper temperature.
Reference junction compensation may also be performed.

The AD12-16/16F combined with the AIM-16P and this driver provide an excellent tool to
handle most kinds of data acquisition signals.

6-2

ANALOG/DIGITAL I/0 CARD

AD12-16/16F USER MANUAL

TASK SUMMARY
TASK 0: Driver initialization.
TASK 1: Set channel scan limit register of AD12-16/16F.
TASK 2: Fetch gain code for a given point address.
TASK 3: Fetch point from point list.
TASK 4: Assign gain code to range of point addresses.
TASK 5: Assign range of point addresses to point list.
TASK 6: Perform conversion of the given point address.
TASK 7: Perform conversion on next point address in the point list.
TASK 8: Perform multiple conversions from the point list using polling.
TASK 9: Perform multiple conversions from the point list using interrupts.
TASK 10: Function assignments.
TASK 11: Reset operations.
TASK 12: Write digital output.
TASK 13: Read digital input.
TASK 14: Load counter/timers.
TASK 15: Read counter/timers.
TASK 16: Fetch Multiple Points (High Performance), point list is used, but
function assignments are not.
TASK 17: Perform multiple conversions from the scan register using DMA.
TASK 18: Transfer data from memory segment to array.
TASK 19: Terminate DMA operations.
TASK 20: D/A operations.
TASK REFERENCE

TASK 0: INITIALIZE

This task provides the driver with default information on 1/0O base address and voltage
range. This task should be called once at the beginning of the program, before any
other tasks are called. If other tasks are called first, they will return error code 1.

NOTES:
Default channel scan limits of 0 to 7 are set if switch S3 is set in 8CH position,
otherwise the default will be 0 to 15.

Disables all interrupt, DMA, counter, and external trigger functions.

Initializes the point list to have point address for each channel of the AD12-
16/16F, with none for the AIM-16P (i.e. point addresses 1, 16, 32, 48 240).
Initializes the function list for each point address to a gain code of 0 and no
functions performed on conversion counts.

1)

2)
3)

4)

INPUT:

6-3

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

params[0]: Base Address.
params[1]: Voltage range, 5 or 10 volt.

OUTPUT:
DATA: NONE.
ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20 or driver not initialized.
status = 2: Invalid base address, params[0] > 0x3f0 or < 0x200.
status = 3: Card does not respond.
status = 15: Voltage range not 5 or 10.
EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 0;
params[0] = 0x300; /* base address = 300 hex */
params[1] = 5; /* voltage range is 5 volts */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */
TASK 1: SET MULTIPLEXER SCAN LIMITS

This task sets the multiplexer scan limits for the A/D converter.

NOTES:

1) This task is included for completeness, but is not usually needed when the point
list is used.

2) If the default limits set in task 0 are acceptable, then this task need not be called.

3) If the lower limit is greater than the higher limit, the multiplexer will scan starting
at the lower limit through the highest channel possible, then reset to 0 and scan
until the high limit is reached. For example, if params[0] = 13 and params[1] = 2
the sequence would be 13-14-15-0-1-2-13-14-15-0-1-2-13-14 etc.

4) If you are using the card in the 8-channel differential mode, avoid setting the
lower limit greater than the upper limit because the counter will attempt to cycle
through channels 8 through 15.

5) If you wish to perform continuous conversions on only one channel, set the low
and high scan limits equal to each other.

6) Control of the multiplexer address is performed by high speed hardware on the
AD12-16/16F card and is independent of the processor. Approximately two
microseconds after the A/D has been triggered and the Sample/Hold amplifier is
holding the previous sample, the multiplexer is advanced to the next channel.
This allows the instrumentation amplifier to settle before the Sample/Hold
amplifier returns to the sample state at the end of the 12-microsecond A/D
conversion (8 microseconds on AD12-16F). This pipelining technique optimizes
throughput of the system.

6-4

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

INPUT:
params[0]: Lower scan limit.
params[1]: Upper scan limit.

OUTPUT:
DATA: NONE.
ERROR CODES:

status = 0: No error.

status = 1: Invalid task number, task > 20, or driver not initialized.
status = 3: Card does not respond.

status = 17: Invalid channel number.

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 1;
params[0] = 2; /* lower scan limit is channel 2 */
params[1] = 15; [* upper scan limit is channel 15 */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 2: FETCH GAIN CODE FOR A POINT ADDRESS

Returns a previously assigned gain code for a given point address.

NOTES: None.
INPUT:
params[0]: Point address.
OUTPUT:
DATA:
params[1]: Gain code for the given point address.
ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 5: Invalid point address, or index.
EXAMPLE:
int task,params|7],status; /* these are globally declared variables */
task = 2;
params|[0] = 14; [* fetch gain code for point address 14*/

6-5

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 3: FETCH POINT ADDRESS FOR A POINT LIST INDEX

Returns a previously assigned point address for a given point list index.

NOTES: None.
INPUT:
params[0]: Point list index.
OUTPUT:
DATA:
params[1]: Point address for the given point list index.
ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 5: Invalid point address, or index.
EXAMPLE:
int task,params|7],status; /* these are globally declared variables */
task = 3;
params|0] = 6; [* fetch point address for the 6th point in the point list*/

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 4: ASSIGNS GAIN CODE TO RANGE OF POINT ADDRESSES

Assigns a given gain code to a given range of point addresses.

NOTES:

1) The first point address of the range must be less than or equal to the last point
address of the range. To assign a gain code to a single point address, make the
first and last point address equal.

2) These gain code settings are only meaningful if the AIM-16P is being used.

3) The following are the possible gain codes.

GAIN AIM-16P OUTPUT RANGE SWITCH SETTINGS
CODE
G/2 OFF G/2 ON
0 GAIN =1 GAIN =0.5
1 GAIN =2 GAIN =1

6-6

ANALOG/DIGITAL I/0 CARD

AD12-16/16F

USER MANUAL

2 GAIN = 10 GAIN =5

3 GAIN = 50 GAIN = 25
4 GAIN =100 GAIN =50
5 GAIN = 200 GAIN =100
6 GAIN = 400 GAIN = 200
7 GAIN = 1000 GAIN = 500
8 AUTO RANGE

4) A gain code of 8 indicates an auto range channel. When the point address is
read, the driver will first read at a gain of 2 (gain code 1), and from this reading,
determine the best gain to use for the second reading to achieve the best
resolution.

INPUT:
params[0]: First point in point address range.
params[1]: Last point in point address range.
params[2]: Gain code to assign.

OUTPUT:
DATA: None.
ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 5: Invalid point address, or index.
status = 6: Invalid gain code.
EXAMPLE:

int task,params[7],status; /* these are globally declared variables */

task = 4;
params[0] = 1; [* first point address in range*/

params[1] = 15; /* last point address in range */

params[2] = 3; /* gain code of 3 */
aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 5: ASSIGN POINT ADDRESSES TO THE POINT LIST

Assigns a range of point addresses to the point list.

NOTES:

6-7

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

1) All point addresses added to the point list are appended to the end of the point
list, after any that have been previously added, including the default point
address. If you desire to start with an empty list, then use TASK 11 to clear the
point list first.

2) If the first point address is larger than the last point address, then the driver will
install them in descending order.

3) Point addresses that are not on a 16 boundary (0, 16, 32 ,48 etc) are only
meaningful if one or more AIM-16P's are attached.

INPUT:
params[0]: First point address in range.
params[1]: Last point address in range.

OUTPUT:
DATA: None.
ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 4: Point list error, list full.
status = 5: Invalid point address, or index.
EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 5;
params|[0] = 0; [* first point address in range*/
params[1] = 31; /* last point address in range, two AIM-16Ps */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 6: FETCH DATA FROM A POINT ADDRESS

Perform a conversion on the point address indicated.

NOTES:
1) This task does not use the point list. If you wish to fetch data from the next point
in the point list then use TASK 7. This task does not use any assigned gains or
TASK 10 functions.
2) Point addresses that are not on a 16 boundary (0, 16, 32 ,48 etc) are only
meaningful if the AIM-16P is being used.

INPUT:
params[0]: Point address to fetch data from.

6-8

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

OUTPUT:
DATA:
params[1]: Resulting conversion.
params[2]: Gain code used.

ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 3: Card does not respond.
status = 5: Invalid point address, or index.
EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task =6;
params[0] = 16; [* fetch data from point address */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 7: FETCH SINGLE DATA POINT USING POINT LIST

Perform a conversion on the point address in the point list indicated by the point list
index.

NOTES:
1) Each time a point is fetched from the list, the list index is incremented. The list
index can be reset to the start of the point list by using TASK 11.

INPUT: None.

OUTPUT:
DATA:
params[0]: Point address converted.
params[1]: Resulting conversion data.
params[2]: Gain code used.

ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task >20, or driver not initialized.
status = 3: Card does not respond.
status = 5: Invalid point address, or index.
EXAMPLE:

int task,params[7],status; /* these are globally declared variables */

6-9

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

task = 7;
aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 8: FETCH MULTIPLE BUFFERED CONVERSIONS

Fetch multiple conversions from the point list, using polling.

NOTES:

1) Each time a point is fetched from the list, the list index is incremented. The list
index can be reset to the beginning of the point list by Task 11.

2) This task uses two buffers, a data buffer and a point/gain buffer. Both buffers
should be integer buffers of the same length. The number of conversions must
not exceed the length of the shortest buffer. If you do, other areas of computer
memory may be corrupted, cause unpredictable computer behavior. The driver
has no criteria to evaluate the validity of the pointer. It is incumbent upon the
application program to supply a valid buffer pointer.

3) The point and gain for each analog input is returned in the point/gain buffer. The
point address and gain are packed into one integer with the point address in the
upper eight bits and the gain in the lower eight bits.

4) The buffers must be declared globally or the driver will not be able to find their
segment.

INPUT:
params[0]: Offset of the data buffer address.
params[1]: Offset of the point/gain buffer address.
params[2]: Number of conversion to make.

OUTPUT:
DATA:
params[3]: Number of conversions completed.
The buffers will contain the conversions and the point/gain data respectively.

ERROR CODES:
status = O: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 3: Card does not respond.
status = 5: Point list error, list empty.
EXAMPLE:

int task,params[7],status; /* these are globally declared variables */
int datbuf[100],chnbuf[100]; /* these are globally declared variables */

task = 8;
params[0] = FP_OFF(datbuf); [* pass offset of data buffer */

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

params[1] = FP_OFF(chnbuf); [* pass offset of point/gain buffer */
params|[2] = 100; /* number of conversions */
aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 9: INTERRUPT DRIVEN DATA ACQUISITION

Provides subtasks to perform buffered data acquisition using interrupts. Sub task
functions include initiating the interrupt conversions, checking for completion and
stopping the interrupt process.

NOTES:

1) Each time a point is fetched from the list, the list index is incremented. The list
index can be reset to the beginning of the point list by TASK 11.

2) This task uses two buffers, a data buffer and a point/gain buffer. Both buffers
should be integer buffers of the same length. The number of conversions must
not exceed the length of the shortest buffer. If you do, other areas of computer
memory may be corrupted, cause unpredictable computer behavior. The driver
has no criteria to evaluate the validity of the pointer. It is incumbent upon the
application program to supply a valid buffer pointer.

3) The point and gain for each analog input is returned in the point/gain buffer. The
point address and gain are packed into one integer with the point address in the
upper eight bits and the gain in the lower eight bits.

4) The buffers must be declared globally or the driver will not be able to find their
segment.

5) This task has several functions, each having their own required parameters.

6) If the timers are used to generate the start-conversion signals, then they should
be configured using TASK 14.

7) SUBTASK 3 is used to disable interrupts before completion of the scan. When
the scan is complete the interrupts are disabled automatically.

INPUT:
params[0]: Subtask to perform, 1, 2, or 3.
1: Initiate interrupt data acquisition.
params[1]: Interrupt level (IRQ).
params[2]: Number of conversion to make.
params[3]: Offset of the data buffer address.
params[4]: Offset of the point/gain buffer address.
params[5]: A/D trigger mode.
0: Start A/D on each positive transition of the IPO/TRGO pin.
1: Use counters 1 and 2 to supply the A/D trigger.
2: Check for end of interrupt scan.
3: Disable the interrupt operation.

OUTPUT:

6-11

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

DATA:
SUBTASK 1: The buffers will contain the conversions and the point/gain
data respectively.
SUBTASK 2: Params[1] = 0 if scan complete, task number if still in progress.

ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 3: Card does not respond.
status = 5: Point error, point list is empty.
status = 7: Invalid number of conversions, not between 1 and 32767.
status = 10: Background task already active.
status = 11: Interrupt not between 2 and 7.
status = 12: Interrupt already unassigned. (SUBTASK 3)
status = 13: Invalid subtask, not 1, 2 or 3.
status = 14: Invalid trigger mode, not 1 or 2.

EXAMPLE:
int task,params|7],status; /* these are globally declared variables */
int datbuf[100],chnbuf[100]; /* these are globally declared variables */

task = 9;
params[0] = 1; [* initiate interrupt scan */
params[1] = 5; /* use IRQS */
params[2] = 100; /* do 100 conversions on this scan */
params[3] = FP_OFF(datbuf); [* pass offset of data buffer */
params[4] = FP_OFF(chnbuf); /* pass offset of point/gain buffer */
aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */
params[0] = 2; /* check for end of scan process */
do {
aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

}
while (params[1] != 0); /* wait until end of scan

[* or if you do not want to wait until end of scan */
params[0] = 3; /* stop interrupt process sub task */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 10: THERMOCOUPLE/FUNCTION ASSIGNMENT

Provides sub tasks to assign thermocouple curves and scaling factors to a given point
address. A subtask is also provided to use the thermocouple tables to manually
linearize a given value.

NOTES:
1) The built-in NIST tables are designed to convert A/D counts to temperature

6-12

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

2)

3)

4)

5)

directly. When using SUBTASK 1, the driver expects the passed counts to be
multiplied by 16 if using the bipolar mode, and multiplied by 8 if using a unipolar
mode.

Curves are assigned to a point address by calling SUBTASK 2 with the ASCII
code of one of the curves listed in the table that follows. Also, temperature units
are assigned in the same manner.

If reference junction compensation using the AIM-16P on board sensor is
desired, then assign this sensor to the point list as the first channel of a given
AIM-16P (ie. 0, 16,32,48 etc). Make sure that the TMP jumpers are installed on
the AIM-16P. Finally, assign the curve "T" to this point address using SUBTASK
2. Any other point addresses on the AIM-16P will now be junction compensated
automatically by the driver each time a point address is converted.

The reference junction circuit on the AIM-16P card generates 24.4 mV/°C. The
counts read in at a gain of 1 are 2.44 millivolts/count. Thus, each count
represents 0.1° C.

When thermocouple curves are assigned to a point address, it is also required to
set that point address to a particular gain using TASK 4. These gains are
presented in the following table. Note that two gain codes are presented for each
thermocouple type, the one you use will depend on the setting of the G/2 switch
on the AIM-16P. If G/2 is OFF, use the lower gain code, if G/2 is ON then use
the higher gain code.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

6) The 5 volt range should be used with thermocouple inputs.

TIC TYPE GAIN | GAINCODE | uVOLTS/ICOUNT
b 200 5/6 12.207
e 50 3/4 48.828
j 100 4/5 24.414
k 50 3/4 48.828
r 200 5/6 12.207
s 200 5/6 12.207
t 200 5/6 12.207
RTD TYPE GAIN | GAINCODE | UVOLTS/ICOUNT
a 100 4/5 24.414
u 100 4/5 24 414

7) For platinum RTD's, there are two curves; "a" for sensors with 392 alpha and "u"
for sensors with 385 alpha.

8) Temperature is returned in increments of 1/10th degree. For example, 100
degrees would be returned as 1000.

9) SUBTASK 3 can be used to force the driver to return values in units determined
by the user rather than counts. For example, you might desire values returned in
millivolts. In such a case, assuming the bipolar mode, scale factors of -5000 and
+5000 would be passed in the call to SUBTASK 3.

10) TASK 10 does not initiate any conversions, but sets up functions that will be
performed automatically whenever conversion are done using tasks 6, 7, 8 or 9.

INPUT:
params[0]: Subtask to perform, 1, 2, 3 or 4.
1: Perform manual linearization of the given data.
params[1]: ASCII code for lower case letter of curve, or upper case T for
reference junction.
params[2]: counts. (see note 1)
2: Assign thermocouple curve to a point address.
params[1]: point address.
params[2]: ASCII code for lower case letter of curve, or upper case T for
reference junction.
params[3]: ASCII code for upper case letter of the desired temperature
units,C or F.
3: Assign scaling factor to a point address.
params[1]: point address.
params[2]: Lower scaling term.

6-14

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

params[3]: Upper scaling term.
4: Replicate a point address function assignment to a range of point addresses.
params[1]: source address to replicate.
params[2]: first point address in destination range.
params[3]: last point address in destination range.

OUTPUT:
DATA:
SUBTASK 1:
params[3]: temperature in tenths of °F.
params[4]: temperature in tenths of °C.

ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 5: Point error, point address out of range.
status = 13: Invalid subtask, not between 1 and 4.
status = 16: Invalid curve.
EXAMPLE:
int task,params|7],status; /* these are globally declared variables */
task = 10;
/* manually linearize a value */
params[0] = 1; /* manual linearization subtask */
params[1] = 116; /* ASCII t for t type thermocouple */
params[2] = 1801; /* counts * 16 at gain of 200 */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */
/* values returned in params[3] and params([4] */
[* assign curve to a point address */

params[0] = 2; [* curve assignment subtask */
params[1] = 0; [* first point address on first AIM-16P */
params[2] = 84; /* ASCII T for reference junction */
params|[3] = 70; /* ASCII F for degrees F */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /*call the driver*/
[* assign a range of £5 volts in millivolt increments to a point address.*/

params[0] = 3; /* range assignment subtask */
params|[1] = 22; [* point address to assign */
params[2] = -5000; /* lower range */

params|[3] = 5000; [* upper range */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */
/* replicate the assignment for point address 22 to point addresses 23-40 */
params|0] = 4; [* replication subtask */

params[1] = 22; [* source point address to replicate */

6-15

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

params[2] = 23; /* lower point address in destination range */
params|3] = 40; [* upper point address in destination range */
aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 11: RESET FUNCTIONS

Performs various reset function on the point list and function/curve assignment tables.
Also provides a subtask to set the sample and hold settle time.

NOTES:

1) SUBTASK 5 is provided to set the sample and hold settle time. High speed
80286 and 80386 computers often will start a conversion before the sample and
hold has had time to settle after changing a channel on the AIM-16P. A value of
25-50 is usually sufficient for an 80386 machine.

INPUT:

params[0]: Subtask to perform, 1, 2, 3, 4 or 5.
1: Reset the point list index to first point address in the point list.
2: Clears all point addresses from the point list.
3: Resets the point list to the default conditions. as described in TASK 0.
4: Clears all curve and scaling assignments.
5: Set the sample and hold settle time.

params[1]: settle time count

OUTPUT:
DATA: None.
ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 13: Invalid sub task, not between 1 and 5.
EXAMPLE:
int task,params|7],status; /* these are globally declared variables */
task = 11;
params|[0] = 5; /* set settle time sub task */
params[1] = 50; /* settle time count of 50 */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 12: DIGITAL OUTPUT

Writes to the digital output bits.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

NOTES:
1) If the AIM-16P is used, then the digital output bits are not available, as they are
used by the driver to set channel and gain on the AIM-16P.
2) If the AIM-16P is not used, the digital input bits may be converted to output bits
by installing jumpers D4 through D7 on the AD12-16/16F.
3) Output values are not checked for proper range.

INPUT:
params[0]: Value to output.

OUTPUT:
DATA: None.

ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */

task = 12;
params[0] = 15; /* set standard 4 output bits high */
aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 13: DIGITAL INPUT

Reads the digital input bits.

NOTES:
1) If the AIM-16P is used, then the digital input bits are not available, as they are
used by the driver to set channel and gain on the AIM-16P. The exception is the
IPO bit.
2) If the AIM-16P is not used, the digital input bits may be converted to output bits
by installing jumpers D4 through D7 on the AD12-16/16F.

INPUT: None.
OUTPUT:
DATA: params[1]: Digital input value.
ERROR CODES:
status = 0: No error.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

status = 1: Invalid task number, task > 20, or driver not initialized.

EXAMPLE:
int task,params|7],status; /* these are globally declared variables */

task = 13;
aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 14: COUNTER/TIMER SETUP

Load the given counter/timer with a count value and mode.

NOTES:
1) When the AD12-16/16F is used with an AIM-16P, counter 0O is not available for
use.
2) For a complete discussion of the counter/timers, see CHAPTER SEVEN.

INPUT:
params[0]: counter number 0,1 or 2.
params[1]: counter mode, between 0 and 5.
params[2]: counter load count.

OUTPUT:
DATA: None.
ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 8: Invalid counter, not 0, 1 or 2.
status = 9: Invalid counter mode, not between 0 and 5.
EXAMPLE:
int task,params|7],status; /* these are globally declared variables */
task = 14;
params|[0] = 1; [* counter 1 */
params[1] = 3; /* counter mode 3, square wave generator */
params|[2] = 100; /* counter load value, acts as divide by 100 */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 15: READ COUNTER/TIMER COUNT

Reads the count of the given counter/timer.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

NOTES:
1) For a complete discussion of the counter/timers, see CHAPTER SEVEN.
2) Counter/timer is latched before read.

INPUT:
params[0]: counter number 0,1 or 2.
OUTPUT:
DATA:
params[1]: counter/timer count.
ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 8: Invalid counter, not 0, 1 or 2.
EXAMPLE:
int task,params|7],status; /* these are globally declared variables */
task = 15;
params|[0] = 1; [* counter 1 */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 16: HHGH PERFORMANCE BUFFERED CONVERSIONS

Fetch multiple conversions from the point list using more efficient code.

NOTES:

1) The point list is used to determine which point addresses to convert.

2) This task will use the gain set up in TASK 4, but will not use the function
assignments set up in TASK 10.

3) This task uses two buffers, a data buffer and a point/gain buffer. Both buffers
should be integer buffers of the same length. The number of conversions must
not exceed the length of the shortest buffer. If you do, other areas of computer
memory may be corrupted, cause unpredictable computer behavior. The driver
has no criteria to evaluate the validity of the pointer. It is incumbent upon the
application program to supply a valid buffer pointer.

4) The point and gain for each analog input is returned in the point/gain buffer. The
point address and gain are packed into one integer with the point address in the
upper eight bits and the gain in the lower eight bits.

5) The buffers must be declared globally or the driver will not be able to find their
segment.

6) Using this task, a 25MHz "386" computer will achieve throughput approaching
34,000 samples per second.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

INPUT:
params[0]: Offset of the data buffer address.
params[1]: Offset of the point/gain buffer address.
params[2]: Number of conversion to make.

OUTPUT:
DATA.

params[3]: Number of conversions completed.
The buffers will contain the conversions and the point/gain data respectively.

ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status = 3: Card does not respond.
status = 5: Point list error, list empty.
EXAMPLE:
int task,params|7],status; /* these are globally declared variables */
int datbuf[100],chnbuf[100]; /* these are globally declared variables */
task = 16;
params[0] = FP_OFF(datbuf); [* pass offset of data buffer */
params[1] = FP_OFF(chnbuf); /* pass offset of point/gain buffer */
params[2] = 100; /* number of conversions */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 17: DO N A/D CONVERSIONS USING DMA

Perform N conversions using DMA and store the results in a specified segment of
memory.

NOTES:

1)

2)

3)

DMA is performed purely by the system and the AD12-16/16F, is a background
operation and is very fast. Throughput is limited mostly by the settle time of the
Sample/Hold amplifier and the A/D converter. The AD12-16 can provide a
maximum of about 60,000 conversions per second. The AD12-16F uses a faster
A/D converter and can sustain a throughput slightly over 100,000 conversions
per second.

The A/D will perform conversions on channels according to the scan limits set in
either TASK 0 or TASK 1.

You may not re-install the DMA task if the DMA task is still active. If you use the
recycle mode, which generates continuous DMA, then TASK 19 which disables
DMA must be run before you can successfully run this task again. If you are
using the non-recycle mode, then it must have reached the conversion count
(which automatically disables interrupts and DMA) before this task can be run

6-20

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

again.

4) The segment registers are not incremented by the handler, therefore the
maximum data area available is 64K (a page) for 32,767 conversions. Be sure
that your data area is not in use by your program or altered by subsequent
operations. Data may be safely retrieved by TASK 18 during or after TASK 17
operation.

5) Upon completion of a DMA operation, the tristate DMA request drivers of the
AD12-16/16F are placed in the high impedance state. This allows more than one
AD12-16/16F to use the same DMA level as long as they do so sequentially.

6) If you are using the programmable interval timer, note that you cannot exit from
TASK 17 until the signal at IPO is taken high.

INPUT:
params[0]: Number of conversions to make.
params[1]: Segment of memory to store data.
params[2]: Trigger source:

0: External trigger input. Conversions start on positive transitions of the IPO
input and continue until the word count is reached.

1: Programmable interval timer. In this case, IPO should be held low until
you want to start conversions. After IPO goes high, this input will have no
further effect. Exit occurs when the word count is reached.

params[3]: Cycle/Recycle operation:

0: One cycle. After completion of the number of conversions specified,
interrupts are disabled and operation status is set to zero.

1: Recycle. Data are continuously written to the same memory, params[0]
corresponds to the memory buffer length. Operation will continue until
stopped by TASK 19.

params[4]: DMA level, 1 or 3.
params[5]: IRQ level, 2 through 7.

RETURNS:
DATA:
Data are stored in the segment address passed, starting at offset 0. The data
may be converted and placed in an array by using TASK 18.

ERROR CODES:
status =0: No error.
status = 1: Invalid task number, task > 20, or driver not initialized.
status =7: Number of conversions is 0 or negative.
status = 10: Interrupt or DMA already active.
status = 11: Invalid interrupt number.
status = 18: Invalid DMA channel.
status = 19 Invalid recycle mode.
status = 20: DMA page error.
status = 21: Segment page wrap around error.

6-21

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

status = 22: Invalid trigger mode.

EXAMPLE:
int task,params([7],status; /* these are globally declared variables */
task = 17,
params|[0] = 100; /* number of conversions */
params[1] = 0x5000; /* use segment 5000, hope itisn't used */
params|[2] = 1; [* use timers for conversion pulses */
params[3] = 0; /* do one cycle only. */
params[4] = 3; [* use DMA level 3 */
params[5] = 5; [* use IRQ 5 */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 18: TRANSFER DATA FROM MEMORY TO ARRAY

Takes data from a segment, extracts the channel and data, and places each into their
own array.

NOTES:

1) Do not transfer more words than the array will hold. The driver has no way to
detect this condition. This condition may cause unpredictable computer
behavior.

2) Due to data re-formatting that this task performs, it is not a general-purpose
block-move utility.

3) If using BASIC. it is advisable to make the data array and channel array assign-
ments just before the CALL statement because declaring a new simple variable
after making this assignment will dynamically relocate the arrays and upset
operation of this task.

4) If you don't need channel data, set params[4] = 0 and channel data will be
suppressed.

INPUT:
params[0]: Number of words to transfer.
params[1]: Source memory segment to transfer from.
params[2]: Starting position within source segment.
params[3]: Offset of destination data buffer.
params[4]: Offset of destination channel buffer.

RETURNS:
DATA:
The data array will contain A/D counts. The count range will be from 0 to 4095 if
the card is in the unipolar mode, or from -2048 to 2047 if the card is in the bipolar
mode.

6-22

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

The channel array will contain the channel number, 0 to 15 if the card is in the
single ended mode or 0 to 7 if it is in the differential mode.

ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20 or driver not initialized.
status = 2: Invalid task number.
status =7: Word count too large.
status = 23: Segment offset too large

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
int datbuf[100],chnbuf[100]; /* these are globally declared variables */

task = 18;

params[0] = 100; /* number of conversions */
params[1] = 0x5000; /* passes segment to copy from */
params[2] = 0; [* starting position in segment is 0*/

params[3] = FP_OFF(datbuf); [* pass offset of data buffer */
params[4] = FP_OFF(chnbuf); /* pass offset of channel buffer */
aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

TASK 19: TERMINATE DMA/INTERRUPT OPERATION

Terminates DMA operation.
NOTES: None.
INPUT: None.

RETURNS:
DATA: None.

ERROR CODES:
status =0: No error.
status = 1: Invalid task number.

EXAMPLE:
int task,params|[7],status; /* these are globally declared variables */

task = 19;
aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

6-23

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

TASK 20: WRITE VALUE TO A D/A CONVERTER

Writes a value to a given D/A converter.
NOTES: None.

INPUT:
params[0]: D/A channel to write to, 0 or 1.
params[1]: Write value, 0 to 4095.

RETURNS:
DATA: None.

ERROR CODES:
status = 0: No error.
status = 1: Invalid task number, task > 20, or driver has not ben initialized.
status = 24: D/A data out of range, not between 0 and 4095.
status = 25: D/A channel not O or 1.

EXAMPLE:
int task,params[7],status; /* these are globally declared variables */
task = 20;
params[0] = 1; /* write to D/A channel 1 */
params[1] = 2047, [* write half scale to this channel */

aa16drv(FP_OFF(&task),FP_OFF(params),FP_OFF(&status)); /* call the driver */

6-24

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

Ay

20N

11:

12:

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:

SUMMARY OF ERROR CODES

Invalid task number: The task number does not fall within the range of 0 through 19.
This error code also occurs if any task is selected before a successful initialization
with TASK 0.

Invalid base address: The base I/O address does not fall within the range of 100 hex
through 3F0 hex.

A/D failed: The EOC (end-of-conversion) signal did not change state. This is usually
because the base address has not been set properly.

Point list is full: The point list can only hold 256 entries.

Invalid point address: The point address does not fall within the range of 0 through
255.

Invalid gain code: The gain code does not fall within the range of 0 through 8.
Invalid reset code: The reset code does not fall within the range of 0 through 5.
Invalid counter/timer number: The counter/timer number is not 0, 1 or 2.

Invalid mode: The counter/timer mode does not fall within the range of 0 through 5.
Interrupt mode already set: The interrupt mode can only be set up once. A
subsequent request has been made to set up the interrupt mode without previously
resetting the mode.

Invalid interrupt number: The interrupt number does not fall within the range of 2
through 7.

No interrupt mode is set: A request has been made to reset an interrupt mode that
has not previously been set.

Invalid SUBTASK number: SUBTASK specified is outside the valid range for agiven
task.

Invalid data buffer: Data buffer is not valid for interrupt driven data acquisition.
Invalid voltage range: Voltage range specified should be either 5 or 10 volts.
Invalid curve specified: The curve code letter specified is not a valid code.

Invalid A/D channel number.

Invalid DMA channel, must be 1 or 3.

Invalid recycle mode, should be 0 or 1.

DMA page boundary error.

Bad segment for DMA transfer.

Invalid trigger mode, should be 0 or 1.

Number of transfer words too large.

D/A output value is out of range. The value is not between 0 and 4095.

D/A channel number is not 0 or 1.

6-25

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

(This page purposely omitted.)

6-26

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

A/D CONVERTER APPLICATIONS

CONNECTING ANALOG INPUTS

The AD12-16/16F offers optional switch-selected eight-channel differential or 16-channel
single-ended input configurations. Single-ended configuration means that you have only
one input relative to ground. A differential input provides two inputs and the signal
corresponds to the voltage difference between these two inputs. Although the single-ended
mode provides ability to accept 16 inputs rather than eight, this configuration is suitable
only for "floating" sources; i.e., a signal source that does not have any connection to ground
at the source.

Thus, if the signal source has one side connected to a local ground, the eight channel
differential configuration should be used. A differential input responds only to difference
signals between the high and low inputs. In practice, the signal source ground will not be
at exactly the same voltage as the computer ground where the AD12-16/16F is because
the two grounds are connected through ground returns of the equipment and the building
wiring. The difference between the ground voltages forms a common mode voltage (i.e.,
a voltage common to both inputs) that a differential input rejects up to a certain limit. In the
case of the AD12-16/16F, the common mode limit is £10V.

If you have a combination of floating and ground-referred signal sources, use the
differential configuration. For the floating signals, connect a jumper between the low input
and the low level ground at pins 28 or 29. The jumper connected between the low input
and the low level ground effectively turns that differential input into a single-ended input.

It's important to understand the difference between inputtypes, how to use them effectively,
and how to avoid ground loops. Misuse of inputs is the most common difficulty that users
experience in applying and obtaining the best performance from data acquisition systems.

COMMENTS ON NOISE INTERFERENCE

Noise is generally introduced into analog measurements from two sources: (a) ground
loops and (b) external noise. In both cases, use of good wiring practice will reduce and
sometimes eliminate the noise. A key point with regard to ground or return wiring is that
in an analog/digital "system", digital circuits should have a separate ground system from
analog circuits with only a single common point. The reason for separate ground busses
is that digital circuits, by their very nature, generate considerable high frequency noise as
they rapidly change state.

7-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

Ground Loops

AC noise and DC offset can be added in series with a grounded signal source if the source
ground is at a different potential than the A/D's analog ground. If there is an ohmic
resistance between the source ground and the A/D's ground, the resultant current flow
causes a voltage to be developed and a "ground loop" exists. If the signal is measured in
a single-ended mode, that voltage is added to the source signal thereby creating an error.
The best way to avoid ground loop errors is to use good wiring practice as described
above. Ifthisis not possible, use of a differential measurement mode will minimize errors.

External Noise

Voltages can be introduced onto signal lines via radiation and/or capacitive coupling. If the
differential measurement mode is used, that noise appears in phase on both the high and
low lines and the common mode rejection capability of this measurement mode will
severely attenuate the noise. In extreme cases, twisted pair and/or shielding will also
reduce the noise problem.

INPUT RANGE AND RESOLUTION SPECIFICATIONS

Resolution of an A/D converter is usually specified in number of bits; i.e. 8 bits, 12 bits, etc.
Input range is specified in volts; i.e. 0-5V, £10 V, £20 mV, etc. To determine the voltage
resolution of an A/D converter, simply divide the full scale voltage range by the number of
parts of resolution. For example, for a unipolar range of 0-10 volts, a 12-bit A/D resolves
the input into 4096 parts. Thus, voltage resolution (the "weight" of one bit) is 2.44 mV. For
a bipolar range of £10V, one LSB is worth 4.88mV.

If an amplifier is incorporated in the circuit providing gain, then divide the voltage resolution
by the gain of the amplifier. For example, a 12-bit A/D with £10V full-scale input range and
an amplifier gain of 100 will provide an overall input resolution of about 49 uV.

CURRENT MEASUREMENTS

Current signals can be converted to voltage for measurement by the A/D converter by
addition of a shunt resistor installed across the input terminals. For example, to
accommodate 4-20 mA current transmitter inputs, connect a 250Q shunt resistor across
the A/D input terminals. The resultant 1-5V signal can then be measured. The ACCES
STA-37 screw terminal accessory board, for example includes a breadboard area with
plated through holes that allow insertion of shunt resistors. If an AIM-16P multiplexer
expansion board is being used, pre-wired pads are provided on the AIM-16.

If all the inputs are 4-20mA range current inputs from current transmitters, then there is a
configuration of the multiplexer expansion board called AIM-161P. That model includes the
shunt resistors and has offset and gain set such that the "live zero" is compensated for and
the full 12-bit resolution of the A/D is realized.

7-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

Note: Accuracy of measurement will be directly affected by the accuracy of these resistors.
Accordingly, precision resistors should be used. Also, if the ambient temperature will vary
significantly, these precision resistors should be low temperature coefficient wire-wound
resistors.

MEASURING LARGE VOLTAGES

Voltages larger than the input range of the A/D can be measured by using a voltage divider.
As above, it is necessary to use precision resistors. Also if the raw voltage is a direct
analog of a parameter being measured, then it will be necessary to apply a scale factor in
software in order to arrive at the correct engineering units.

ADDING MORE ANALOG INPUTS

You can add sub-multiplexers to any or all of the analog inputs of AD12-16/16F. ACCES'
AIM-16P provides capability for 16 channels per input plus a common instrumentation
amplifier. Up to 16 AIM-16P's can be added to one AD12-16/16F providing a total input
capability up to 256 channels. The first eight AIM-16P require a cable adapter, ACCES part
number CA37-1. If additional AIM-16P's are required then a modified cable adapter is
required, ACCES part number CA37-2. See APPENDIX B: CABLING AND CONNECTOR
INFORMATION for a description of these cable adapters. When a sub-multiplexer is
added, it is not possible to operate AD12-16/16F in the fast DMA mode because of need
to drive the sub-multiplexer board address through the digital output port. However, you
may use some of the AD12-16/16F channels as direct inputs for DMA purposes, while
using other channels for slower speed inputs through the AIM-16P(s). The AIM-16P is best
suited to handling high-gain, low-rate-of-change inputs from sensors such as ther-
mocouples, pressure transducers, etc.

7-3

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

PRECAUTIONS - NOISE, GROUND LOOPS, AND OVERLOADS

Unavoidably, data acquisition applications involve connecting external things to the
computer. DO NOT get inputs mixed up with the AC line. An inadvertent short can
instantly cause extensive damage. ACCES cannot accept liability for this kind of accident.

As an aid to avoid this problem:
a. Avoid direct connection to the AC line.

b. Make sure that all connections are secure so that signal wires are not likely to come
loose and short to high voltages.

c. Useisolation amplifiers and transformers where necessary. There are two types of
ground connections on the rear connector of AD12-16/16F. These are called Power
Ground and Low Level Ground. Power ground is the noisy or dirty ground that is
meant to carry all digital signals and heavy (power supply) currents. Low Level
Ground is the signal ground for all analog input functions. It is only meant to carry
signal currents (less than a few milliamperes) and is the ground reference for the
A/D converter. Due to connector contact resistance and cable resistance there may
be many millivolts difference between the two grounds even though they are
connected together and to the computer and power line grounds on the
AD12-16/16F card.

7-4

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

COUNTER/TIMER OPERATIONS

The AD12-16/16F contains a type 8254 programmable counter/timer which allows you to
implement such functions as a Real-Time Clock, Event Counter, Digital One-Shot,
Programmable Rate Generator, Square-Wave Generator, Binary Rate Multiplier, Complex
Wave Generator, and/or a Motor Controller. The 8254 is a flexible but powerful device that
consists of three independent, 16-bit, presettable, down counters. Each counter can be
programmed to any count between 1 or 2 and 65,535 in binary format, depending on the
mode chosen.

On the AD12-16/16F these three counters are designated Counter #0, Counter #1, and
Counter #2. Counter #0 is un-dedicated, with the gate, output and clock connections fully
accessible via the I/O connector. Counter #0 is enabled by a discrete input and uses either
an internal 100KHz clock or an external clock of up to 10MHz as selected by your software.
Counters #1 and #2 are cascaded together to form a 32-bit counter. This dual counter
can be enabled (gated) by program control or by an external signal as selected by your
software and clocked by a jumper-selected 1TMHZ or 10MHZ precision crystal-controlled
internal source.

When the AIM-16P is used in conjunction with the AD12-16/16F, counter #0 is not available
for use.

OPERATIONAL MODES

The 8254 modes of operation are described in the following paragraphs to familiarize you
with the versatility and power of this device. For those interested in more detailed
information, a full description of the 8254 programmable interval timer can be found in the
Intel (or equivalent manufacturers) data sheets. The following conventions apply for use
in describing operation of the 8254 :

Clock: A positive pulse into the counter's clock input.

Trigger: A rising edge input to the counter's gate input.

Counter Loading: Programming of a binary count into the counter.
Mode 0: Pulse on Terminal Count
After the counter is loaded, the output is set low and will remain low until the counter
decrements to zero. The output then goes high and remains high until a new count is

loaded into the counter. A trigger enables the counter to start decrementing. This mode
is commonly used for event counting with Counter #0.

Mode 1: Retriggerable One-Shot

8-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

The output goes low on the clock pulse following a trigger to begin the one-shot pulse and
goes high when the counter reaches zero. Additional triggers result in reloading the count
and starting the cycle over. If a trigger occurs before the counter decrements to zero, a
new count is loaded. Thus, this forms a re-triggerable one-shot. In mode 1, a low output
pulse is provided with a period equal to the counter count-down time.

Mode 2: Rate Generator

This mode provides a divide-by-N capability where N is the count loaded into the counter.
When triggered, the counter output goes low for one clock period after N counts, reloads
the initial count, and the cycle starts over. This mode is periodic, the same sequence is
repeated indefinitely until the gate input is brought low. This mode is used on the
AD12-16/16F card in counters 1 and 2 to generate periodic A/D start commands. This
mode also works well as an alternative to mode 0 for event counting.

Mode 3: Square Wave Generator

This mode operates periodically like mode 2. The output is high for half of the count and
low for the other half. If the count is even, then the output is a symmetrical square wave.
If the count is odd, then the output is high for (N+1)/2 counts and low for (N-1)/2 counts.
Periodic triggering or frequency synthesis are two possible applications for this mode. Note
that in this mode, to achieve the square wave, the counter decrements by two for the total
loaded count, then reloads and decrements by two for the second part of the wave form.

Mode 4: Software Triggered Strobe

This mode sets the output high and, when the count is loaded, the counter begins to count
down. When the counter reaches zero, the output will go low for one input period. The
counter must be reloaded to repeat the cycle. Alow gate input will inhibit the counter. This
mode can be used to provide a delayed software trigger for initiating A/D conversions.

Mode 5: Hardware Triggered Strobe
In this mode, the counter will start counting after the rising edge of the trigger input and will
go low for one clock period when the terminal count is reached. The counter is

retriggerable. The output will not go low until the full count after the rising edge of the
trigger.

8-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

PROGRAMMING
On the AD12-16/16F, the 8254 counters occupy the following addresses:

Base Address + 12:
Base Address + 13:
Base Address + 14:
Base Address + 15:

Read/Write Counter #0
Read/Write Counter #1
Read/Write Counter #2
Write to Counter Control register

The counters are programmed by writing a control byte into a counter control register at
Base Address + 15. The control byte specifies the counter to be programmed, the counter
mode, the type of read/write operation, and the modulus. The control byte format is as
follows:

B7 B6 B5 B4 B3 B2 B1 BO
SC1 SCO0 RW1 RWO M2 M1 MO BCD
SCO0-SC1: These bits select the counter that the control byte is destined for.
SC1 | SCO Function

0 0 Program Counter #0

0 1 Program Counter #1

1 0 Program Counter #2

1 1 Read/Write Cmd.”

* See section on READING AND LOADING THE COUNTERS.

RWO0-RW1:These bits select the read/write mode of the selected counter.

RW1 RWO0 | Counter Read/Write Function

0 0 Counter Latch Command

0 1 Read/Write LS Byte

1 0 Read/Write MS Byte

1 1 Read/Write LS Byte, then MS Byte

8-3

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

MO-M2: These bits set the operational mode of the selected counter.

MODE |[M2 M1 MO

arh WN-220
OO -~ 00
- O -0 -0

BCD: Set the selected counter to count in binary (BCD = 0) or BCD (BCD = 1).
READING AND LOADING THE COUNTERS

If you attempt to read the counters on the fly when there is a high input frequency, you will
most likely get erroneous data. This is partly caused by carries rippling through the
counter during the read operation. Also, the low and high bytes are read sequentially rather
than simultaneously and, thus, it is possible that carries will be propagated from the low to
the high byte during the read cycle.

To circumvent these problems, you can perform a counter-latch operation in advance of
the read cycle. To do this, load the RW1 and RW2 bits with zeroes. This instantly latches
the count of the selected counter (selected via the SC1 and SCO bits) in a 16-bit hold
register. (An alternative method of latching counter(s) which has an additional advantage
of operating simultaneously on several counters is by use of a readback command to be
discussed later.) A subsequent read operation on the selected counter returns the held
value. Latching is the best way to read a counter on the fly without disturbing the counting
process. You can only rely on directly read counter data if the counting process is
suspended while reading, by bringing the gate low, or by halting the input pulses.

For each counter you must specify in advance the type of read or write operation that you
intend to perform. You have a choice of loading/reading (a) the high byte of the count, or
(b) the low byte of the count, or (c) the low byte followed by the high byte. This last is of
the most general use and is selected for each counter by setting the RW1 and RWO bits
to ones. Of course, subsequent read/load operations must be performed in pairs in this
sequence or the sequencing flip-flop in the 8254 chip will get out of step.

8-4

ANALOG/DIGITAL I/0 CARD

AD12-16/16F USER MANUAL

The readback command byte format is:

B7 B6 B5 B4 B3 B2 B1 BO
1 1 CNT STA c2 C1 Co 0
CNT: When is 0, latches the counters selected by bits CO-C2.
STA: When is 0, returns the status byte of counters selected by C0O-C2.
CO0, C1, C2: When high, select a particular counter for readback. CO selects Counter

0, C1 selects Counter 1, and C2 selects Counter 2.

You can perform two types of operations with the readback command. When CNT=0, the
counters selected by CO through C2 are latched simultaneously. When STA=0, the
counter status byte is read when the counter I/O location is accessed. The counter status
byte provides information about the current output state of the selected counter and its con-
figuration. The status byte returned if STA=0 is:

B7 B6 B5 B4 B3 B2 B1 BO

ouT NC RW 1 RW2 M2 M1 MO BCD

OUT: Current state of counter output pin.

NC: Null count. This indicates when the last count loaded into the counter
register has actually been loaded into the counter itself. The exact time
of load depends on the configuration selected. Until the count is loaded
into the counter itself, it cannot be read.

RW1, RWO0O: Read/Write command.

M2, M1, MO: Counter mode.
BCD: BCD = 0 is binary mode, otherwise counter is in BCD mode.

If both STA and CNT bits in the readback command byte are set low and the RW1 and
RWO bits have both been previously set high in the counter control register (thus selecting
two-byte reads), then reading a selected counter address location will yield:

1st Read: Status byte
2nd Read: Low byte of latched data
3rd Read: High byte of latched data

After any latching operation of a counter, the contents of its hold register must be read
before any subsequent latches of that counter will have any effect. If a status latch
command is issued before the hold register is read, then the first read will read the status,
not the latched value.

8-5

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

PROGRAMMING EXAMPLES
Generating a Square Wave Output

To program Counters #1 and #2 for either a 1 KHz or 10 KHz output (depending on setting
of the CLOCK jumper) you need to divide the 1 or 10MHz crystal oscillator input by 1,000.
To obtain a symmetrical waveform, the divisor loaded into the counter should be an even
number. If it is an odd number, then one half of the waveform would be one input clock
pulse period longer than the other. A convenient divisor to use in counter #1 is 10 and
counter #2 is 100 (because 10 x 100 = 1,000).

outportb(BASEADDRESS + 15, 0x76); /* counter #1 to square wave mode */
outportb(BASEADDRESS + 15, 0xb6); /* counter #2 to square wave mode */

outportb(BASEADDRESS + 13,10); [* write lower byte, counter #1 */
outportb(BASEADDRESS + 13,0); [* write upper byte, counter #1 */
outportb(BASEADDRESS + 14,100); [* write lower byte, counter #2 */
outporto(BASEADDRESS + 14,0); [* write upper byte, counter #2 */

Determining Status of Counter #1

outporto(BASEADDRESS + 15, Oxe4); /* read back command, counter #1 status */
printf("%d",inportb(BASEADDRESS + 13); /* read the status byte for counter #1*/

Using Counter #0 as a Pulse Counter

Note that the counters are "down" counters so, when resetting them, it's better to load them
with a full count value of 65,535 rather than zero.

outportb(BASEADDRESS + 15,0x30); /* counter #0, mode 0 */
outportb(BASEADDRESS + 12,0xff); /* counter #0 low load byte */
outportb(BASEADDRESS + 12,0xff); /* counter #0 high load byte */

Reading Counter #0
outportb(BASEADDRESS + 15,0x30); [* counter #0, latch command */

/* read in both bytes of the latched value and combine into an integer */
value = inportb(BASEADDRESS + 12) + (inportb(BASEADDRESS + 12) * 256;

8-6

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

PROGRAMMING EXAMPLES USING THE A16DRV DRIVER

In practice, Tasks 10 through 12 of the A16DRYV driver can be used to perform equivalent
operations to the above examples with fewer programming steps.

For counting pulses, the counter configuration is not of great importance because you will
only be using the countdown capabilities of the counter. Mode 2 is as good as any other
choice for pulse counting:

task = 10; /* set counter #0 mode task */
params|[0] = 2; /* set counter #0 mode to 2 */
a16drv(FP_OFF(task),FP_OFF(params),FP_OFF(status)); [* call the driver */

As in the previous example, load Counter #0 with a full scale count of 65,535 (hex FFFF)
using Task 11 of the driver. While loading the counter, counting can be inhibited by
holding the gate input, IP2, low.

task = 11; /* set counter #0 count task */
params[0] = Oxffff; /* set counter #0 count to ffff hex (65535) */
a16drv(FP_OFF(task),FP_OFF(params),FP_OFF(status)); [* call the driver */

Next, apply the number of pulses to be counted. The gate input, IP2, must now be high or
can be taken high for some fixed time interval to control the number of pulses counted.
You can read the new count using TASK 12 of the driver:

task = 12; [* read counter #0 count task */

params|[0] = 1; /* indicates a latch before read */

task = 11; /* set counter #0 count task */

params[0] = Oxffff; /* set counter #0 count to ffff hex (65535) */
a16drv(FP_OFF(task),FP_OFF(params),FP_OFF(status)); [* call the driver */

Note that in the counter read task, TASK 12, params[0] specifies the type of read operation
to perform. If params[0] = 1, a counter latching operation is automatically performed. This
method of reading must be used if you want to read the counter while it is still counting.
(See previous section titled “READING AND LOADING THE COUNTERS”.) If
params[0]=0, then a direct read of the counter is initiated and, in this case, the counter
must be static or an erroneous reading can occur.

Upon return, params[1] contains the counter contents.

8-7

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

COUNTER/TIMER ENABLE REGISTER

This is a two-bit, write-only register located at Base Address+10. If the least-significant bit,
CO, is high, it allows the IPO signal to control the gates of Counters #1 and #2. This
provides a means of disabling trigger pulses from the programmable interval timer to the
A/D until IPO is taken high. If CO is low, then IP0O has no control over the timer.

The second bit, C1, controls the source of clock inputs to Counter #0. If C1 is a zero, then
the external clock input is enabled. If C1 is a one, then the counter is connected to a stable
100KHz crystal controlled oscillator. This control capability is useful if Counter #0 is used
for pulse width measurements, delay generation, frequency synthesis, or as a secondary
timer.

TRIGGERING THE A/D PERIODICALLY
When you are using the A/D converter on AD12-16/16F, one of the key uses for the
programmable interval timer is to provide start pulses for periodic sampling. You can set
up an output frequency by using Task 17 to load Counters #1 and #2 with the required
divisors.
For example, assume that a trigger rate of 8.3KHz is needed. First, work out the overall
division ratio from either 1MHz or 10MHz (depending on the setting of the CLOCK jumper
on the card). Assuming it is set for 1MHZ:
1,000,000 / 8300 = 120.48
The closest frequency obtainable would be :
1,000,000/ 120 = 8.333KHz

Now, divide the 120 between the two counters(3 * 40 = 120):

task = 17;/* load counters #1 and #2 task */

params[0] = 3;/* counter #1 divisor */

params[1] = 40;/* counter #2 divisor */

a16drv(FP_OFF(task),FP_OFF(params),FP_OFF(status));/* call the driver */

(Continued)

8-8

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

If the 10MHz clock source had been used, closer compliance to the desired 8.3KHZ
frequency would have been possible; i.e.,

10,000,000 / 8300 = 1204.8
10,000,000 / 1205 = 8.299 KHz

Then, the counters could have been loaded with division ratios of params[0] = 5 and
params[1] = 241 (5 * 241 = 1205).

GENERATING SQUARE WAVES OF PROGRAMMED FREQUENCY

Either the Counter #1 and #2 combination or Counter #0 can be used to generate square
waves of programmable frequency. Counter #0 is internally connected to a 100KHZ
on-board source when the C1 bit of the timer counter enable register is high and the
Counter #0 gate inputis high. Counter #0 can be programmed to operate in a square wave
configuration with a maximum divisor of 65,535. Thus, the lowest output frequency
available directly from Counter #0 is about 1.5HZ. The minimum divisor can be as low as
1 yielding a maximum output frequency of 50KHZ. Note that the divide by 2 is
accomplished by loading a 1 into the counter.

Calculating the divisor is straightforward. For example, assume that you want a 1KHZ
output frequency. The input frequency to the counter is 100KHZ so you must divide by
100. Counter #0 should be set in mode 3 (square wave generator) and loaded with 100
as follows:

outporto(BASEADDRESS + 10, 2); /* enable 100KHZ to counter #0 */
task = 10; /* set counter #0 mode task */
params[0] = 3; /* set counter #0 mode to 3 */
a16drv(FP_OFF(task),FP_OFF(params),FP_OFF(status)); /* call the driver */
task = 11; /* set counter #0 count task */
params|[0] = 100; /* set counter #0 count to 100 */
a16drv(FP_OFF(task),FP_OFF(params),FP_OFF(status)); /* call the driver */

Counters #1 and #2 will always be set to the rate generator configuration by the A16DRV
driver when Task 0 is run. But you can use direct register write statements to alter their
operating configuration to the square wave configuration. The frequency range available
is identical to that obtained in the rate generator mode. There is considerable flexibility in
output frequency range. With a division ratio of 2°? (65,535 x 65,535), a 1MHz clock input
results in an output of about 1 pulse/hour. At the other extreme, with a minimum division
ratio of 4 (2 * 2) and a 10MHz clock input, a 2.5MHz output can be generated.

8-9

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

MEASURING FREQUENCY AND PERIOD

The two previous sections show how to count pulses and generate output frequencies. It
is also possible to measure frequency by raising the gate input of Counter 0 for a known
time interval and counting the number of clock pulses accumulated for that interval. The
gating signal can be derived from Counters #1 and #2 operating in a square wave mode.

Counter #0 can also be used to measure pulse width or half period of a periodic signal.
The signal should be applied to the gate input of Counter #0 and a known frequency (such
as the100 KHz crystal controlled oscillator) applied to the Counter #0 clock input. During
the interval when the gate input is low, Counter #0 is loaded with a full count of 65,535.
When the gate input goes high, the counter begins decrementing until the gate input goes
back low at the end of the pulse. The counter is then read and the change in count is a
linear function of the duration of the gate input signal. If Counter #0 receives 10
microsecond duration clock pulses (100KHz), the maximum pulse duration that can be
measured is 65,535*10° = 655 milliseconds. Longer pulse durations can be measured if
Counters #1 and #2 are used as the input clock source for Counter #0.

GENERATING TIME DELAYS
There are four methods of using Counter #0 to generate programmable time delays.
Pulse On Terminal Count

After loading, the counter output goes low. Counting is enabled when the gate goes high.
The counter output will remain low until the count reaches zero, at which time the counter
output goes high. The output will remain high until the counter is reloaded by a
programmed command. If the gate goes low during countdown, counting will be disabled
as long as the gate input is low.

This mode can be used by the AD12-16/16F card to hold off external start pulses to the A/D
for up to 650 milliseconds. Counter #0 is operated in mode 0, with the desired number of
delay counts loaded. The Counter #0 clock is supplied by the on-board 100KHz oscillator
(C1 of the base address + 10 register should be a "1"). The output of counter #0 is con-
nected to Counters #1 and #2 gate, at digital input IPO. Counters #1 and #2 are used as
a programmable trigger source for the A/D (CO of the base address + 10 a "1"). When
Counter #0 is gated, it will count, and its output will go high after it has counted down. This
high will then gate Counters #1 and #2 to count, supplying trigger pulses to the A/D.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

Programmable One-Shot

The counter need only be loaded once. The time delay is initiated when the gate input
goes high. At this point the counter output goes low. If the gate input goes low, counting
continues but a new cycle will be initiated if the gate input goes high again before the
timeout delay has expired; i.e., is re-triggerable. At the end of the timeout, the counter
reaches zero and the counter output goes high. That output will remain high until
re-triggered by the gate input.

Software Triggered Strobe

This is similar to Pulse-on-Terminal-Count except that, after loading, the output goes high
and only goes low for one clock period upon timeout. Thus, a negative strobe pulse is
generated a programmed duration after the counter is loaded.

Hardware Triggered Strobe

This is similar to Programmable-One-Shot except that when the counter is triggered by the
gate going high, the counter output immediately goes high, then goes low for one clock
period at timeout, producing a negative-going strobe pulse. The timeout is re-triggerable;
i.e., a new cycle will commence if the gate goes high before a current cycle has timed out.

GENERATING INTERRUPTS WITH THE COUNTER/TIMER

The AD12-16/16F architecture does not allow you to directly generate an interrupt from the
counter/timer. However, you can set up the A/D to be triggered by the counter/timer and,
in turn, have the A/D generate an interrupt at the end of its conversion cycle (a constant
delay equal to the A/D cycle). Indirectly this accomplishes the desired result and you can
install any desired interrupt routine to service the interrupt. This is what the A16DRV driver
does in Tasks 5, 18, and 20 and provides examples of using the interrupt for servicing the
A/D, outputting periodic wave forms on the D/A's, and block scanning channels.

Note also that it is possible to trigger the A/D externally or by a programmed write to an I/O
port and invoke an interrupt at the end of A/D conversion in the same way.

8-11

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

(This page purposely omitted.)

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

D/A CONVERTERS

There are two separate double-buffered, 12-bit, multiplying digital-to-analog converters on
the AD12-16/16F card. Each D/A may be used with an on-board fixed -5VDC reference
voltage as a conventional 0 to +5V output D/A. Alternatively, the D/A's may be used with
a variable or AC reference voltage as multiplying D/A's. In both cases, the output is the
product of the loaded digital count and the reference voltage input. The maximum output
voltage swing of the D/A's is £10V. Twelve-bit accuracy is maintained at update rates up
to 1 KHz.

PROGRAMMING

Since the data is 12 bits wide, it has to be written to each D/A in two consecutive bytes.
The first byte contains the four least-significant bits of data and the second byte contains
the eight most-significant bits of data. The least-significant byte should be written first
and is stored in an intermediate register in the D/A with no effect on the output. When the
most- significant byte is written, it's value is added to the stored least-significant data and
presented "broadside" to the D/A converter thus assuring a single-step update. Note that
the four bits of the least-significant byte are left justified.

The location of the D/A registers is:
Base Address + 4: D/A #0 Low Byte
Base Address + 5: D/A #0 High Byte
Base Address + 6: D/A #1 Low Byte
Base Address + 7: D/A #1 High Byte

The data format is:

Least-significant byte:

B7 B6 B5 B4 B3 B2 B1 BO

DA3 DA2 DA1 DAO X X X X

DAO-DA3: Least-significant four bits of the output value.
X: Don't care bits. It is good programming practice to set these to 0.

9-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

Most-significant byte:

B7 B6 B5 B4 B3 B2 B1 BO

DA11 DA10 DA9 DA8 DA7 DAG6 DAS5 DA4

DA4-DA11: The eight most-significant bits of the output.

For eight-bit operations, note that you can first write zeroes to the low bytes at base
address+4 and base address+6, and all subsequent operations may then be performed
with the high bytes only.

The following example shows how to output data in "C" and is readily translatable to other
languages. Since the D/A's have 12-bit resolution, data should be in the range 0 to 4095
decimal.

unsigned value; /* this is our output variable */
value = 2048; /* we will output half scale */
value *= 16; /* multiplying by 16 will left justify data */

outportb(base_address + 4,value & Oxff); /* extract and output lower byte of count */
outportb(base_address + 5,value / 256); /* extract and output upper byte of count */

An assembly language routine is even simpler. Assume AX contains the data and DX
contains the card base 1/0O address. To write to D/A #0:

MOV CL4 ; set up for four left shifts
SAL AX,CL ; left-justify data
OUT DX,AX ; write to D/A #0

The lengthy routine using direct register access can be avoided by using TASKS 15 or 16
of the standard driver. TASK 15 outputs data to one D/A and TASK 16 is optimized to
update both D/A's near-simultaneously. A typical output routine using the driver is:

task = 16; /* output to both D/A's */
params[0] = 2048; /* half scale for DAC 0 */
params[1] = 1024; [* quarter scale for DAC 1 */
a16drv(&task,params,&status); /* call the driver */

if (stats = 0) printf("Error code %d returned by the driver...",status);
[* print error code if any */

9-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

USE WITH AC REFERENCE

Apart from uses as standard DC-output D/A's, these circuits can be used with a variable
bipolar AC or DC reference signal. In this mode, they perform as a digitally-programmed
gain control or attenuator. The voltage output:

V. = -(digital input) * V, /4096

A parameter of interest in AC operation is "feed-through", the amount of residual signal at
digital zero. Feed-through is mainly a function of stray capacitance and rises with
frequency. At 10 KHz it is typically 5 mV peak-to-peak with a £5V reference.

The D/A's will perform well in synchro-to-digital and resolver applications which typically
occur at 400 HZ. The accuracy vs frequency characteristics of the D/A's will be less than
12 bits at frequencies above 1 KHZ due to distributed capacitance in the R-2R ladder
network of the D/A.

ARBITRARY WAVEFORM OUTPUT

A common requirement for D/A's in test applications is to output a waveform. At low
frequencies, this can be done with a timing loop in your program, but it is difficult to control
the timing with any degree of precision when operating at more than a few points per
second.

TASK 18 provides a method to output data from an array using interrupts. The maximum
rate at which data can be transferred depends mainly on execution time of the interrupt
service routine and the speed of the processor. Task 18 can output in excess of 4000 data
points per second on a standard 4.77 Mhz 8088 processor. After an interrupt is asserted,
there is a delay in starting to process the interrupt and this delay varies a little depending
on the instruction that is being processed at the time or if a higher priority interrupt is being
serviced or requesting service. In the PC, both the internal DOS timer on level 0 and the
keyboard on level 1 have higher priority than any of the expansion bus interrupts (levels
2-7). The latency or variation in the delay, causes a time jitter in the steps which is more
noticeable at higher output frequencies. The latency variation, which can amount to several
tens of microseconds, can be reduced by suppressing other interrupts while outputting data
from the D/A.

The following example gives an idea of the steps involved in using TASK 18. For example,

to generate a 60 HZ sine wave with 50 data points per cycle, first set up the counter/timer

to output afrequency of 60*50 = 3 KHZ to generate interrupts at the desired rate. Note that

there is a limitation here due to the rate at which interrupts can be processed:
Frequency * Number of steps < 4000

The lower the frequency, the more steps or points that we can put in the waveform. Using

9-3

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

a clock frequency of 10 MHZ, you can set a division ratio of 3333 at Counters 1 and 2 to
output a frequency of 3000.3 HZ. In turn, with 50 data points per cycle, this would yield an
output of 60.006 Hz; pretty close to the desired 60 Hz. Using TASK 17, set the timer:

task = 17; /* set up counters 1 and 2 */
params|[0] = 3; [* counter 2 divider */
params[1] = 1111; [* counter 1 divider */

a16drv(&task,params,&status); /* call the driver */
Next, load an integer array with the table of output points. Since the array is to output a
12-bit word, it is also necessary to do scaling in this step. With the D/A connected to the
internal -5V reference, 0 corresponds to 0V and 4095 corresponds to 4.9988V. The
following will dimension a 50-element integer array and load it with a sine wave centered
around 2048 bits or +2.5V:

intindex, datbuf[50]; /* datbuf must be declared global */

I* compute the value for on complete cycle of a sine wave, using 50 increments */

for (index = 0;index < 50;index++) datbuf[index] = 2048 + (int)sin(2*2.14159)/50);

/* now use TASK 18 to output these values as a constant waveform */

task = 18; [* waveform output task */
params[0] = 0; /* use D/A channel 0 */
params|[1] = 50; /* number of data points */
params[2] = 0; /* continuous cycle operation */
params[3] = FP_OFF(datbuf); [* pass the offset of our buffer */
params[4] = 0; /* do not collect A/D data */

a16drv(&task,params,&status); /* call the driver */

9-4

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

CABLING AND CONNECTOR INFORMATION

AD12-16/16F OUTPUT CONNECTOR PIN ASSIGNMENTS

Connections are made to the AD12-16/16F card via a 37-pin D type connector that extends
through the back of the computer case. The female mating connector can be a Cannon
#DC-37S for soldered connections or insulation displacement flat cable types such as AMP
#745242-1 may be used. The wiring may be directly from the signal sources or may be on
ribbon cable from screw terminal accessories such as ACCES 1I/O Products Inc. part
number STA-37. The pin assignments are as follows:

PIN NAME FUNCTION

1 +5VDC +5VDC Power from the Computer Bus

2 CTRO OUT Counter 0 Output

3 OP3 Digital Output #3 (MSB)

4 OP1 Digital Output #1

5 IP3 Digital Input #3

6 IP1 Digital Input #1

7 COM Power Common (Logic Ground)

8 V(ref) -5V Reference Voltage

9 DACO OUT D/A Channel 0 Output

10 DACO REF D/A Channel 0 Reference Input

11 CH7 LO/CH15 HI Chl 7 Analog Low Input (diff'l) Chl 15 Analog High Input (s.e.)
12 CH6 LO/CH14 HI Chl 6 Analog Low Input (diff'l) Chl 14 Analog High Input (s.e.)
13 CH5 LO/CH13 HI Chl 5 Analog Low Input (diff'l) Chl 13 Analog High Input (s.e.)
14 CH4 LO/CH12 HI Chl 4 Analog Low Input (diff'l) Chl 12 Analog High Input (s.e.)
15 CH3 LO/CH11 HI Chl 3 Analog Low Input (diff'l) Chl 11 Analog High Input (s.e.)
16 CH2 LO/CH10 HI Chl 2 Analog Low Input (diff'l) Chl 10 Analog High Input (s.e.)
17 CH1 LO/CH9 HI Chl 1 Analog Low Input (diff'l) Chl 9 Analog High Input (s.e.)
18 CHO LO/CHS8 HI Chl 0 Analog Low Input (diff'l) Chl 8 Analog High Input (s.e.)
19 L.L. GND Low Level Ground (Analog Common)

20 CTR2 OUT Counter 2 Output

21 CTRO IN Counter 0 Clock Input

22 OP2 Digital Output #2

23 OPO Digital Output #0 (LSB)

24 IP2/CTRO GATE Digital Input #2, Also gate for Counter 0 if enabled

25 IPO/TRIG O Digital Input #0, Also A/D trigger or ctr 1 & 2 gate if enabled
26 DAC1 REF D/A Channel 1 Reference Input

27 CAC1 OUT D/A Channel 1 Output

28 L.L. GND Low Level Ground (Analog Common)

29 L.L. GND Low Level Ground (Analog Common)

30 CH7 HI Chl 7 Analog High Input

31 CH®6 HI Chl 6 Analog High Input

32 CH5 HI Chl 5 Analog High Input

33 CH4 HI Chl 4 Analog High Input

34 CH3 HI Chl 3 Analog High Input

35 CH2 HI Chl 2 Analog High Input

36 CH1 HI Chl 1 Analog High Input

37 CHO HI Chl 0 Analog High Input

AD12-16/16F TO AIM-16P CABLE ADAPTER ASSEMBLY
If you are using an AD12-16/16F with an AIM-16P, a special cable adapter may be ordered

10-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

directly from ACCES I/O Products Inc., the part number is CA37-1. The cable adapter will
allow the use the lower eight channels of the AD12-16/16F for up to eight AIM-16P's. This
adapter is designed to be used with our standard 37-pin ribbon cable.

If you desire to construct a cable yourself, the following chart provides the recommended
pin connections. The cable requires two 37 pin D type female connectors. Use caution
and ensure that in the positions where N/C is specified that no connection is made.

AIM-16P AIM-16P FUNCTION AD12-16/16F FUNCTION AD12-16
1 +12 volt power N/C
2 unused Channel 15 analog input 11
3 Gain selection - bit 0 Digital input #1, set for output 6
4 unused -5V REF 8
5 Gain selection - bit 1 Digital input #2, set for output 24
6 Gain selection - bit 2 Digital input #3, set for output 5
7 Address selection - bit 0 Digital output #0 23
8 Address selection - bit 1 Digital output #1 4
9 Address selection - bit 2 Digital output #2 22
10 Address selection - bit 3 Digital output #3 3
11 Common (logic ground) Common (Logic ground) 7
12 unused Channel 14 analog input 12
13 unused Channel 13 analog input 13
14 unused Channel 12 analog input 14
15 unused Channel 11 analog input 15
16 unused Channel 10 analog input 16
17 unused Channel 9 analog input 17
18 LL GND - Analog Common LL GND - Analog Common 19
19 +10 V REF N/C
20 -12 volt power N/C
21 unused Channel 8 analog input 18
22 unused LL GND - Analog Common 28
23 unused D/A channel 0 output 9
24 unused D/A channel 0 reference input 10
25 unused Digital input #0, A/D trigger 25
26 unused D/A channel 1 reference input 26
27 unused D/A channel 1 output 27
28 +10 V REF return N/C
29 +5 volt power +5 volt power 1
30 Output channel 7 Channel 7 analog input 30
31 Output channel 6 Channel 6 analog input 31
32 Output channel 5 Channel 5 analog input 32
33 Output channel 4 Channel 4 analog input 33
34 Output channel 3 Channel 3 analog input 34
35 Output channel 2 Channel 2 analog input 35
36 Output channel 1 Channel 1 analog input 36
37 Output channel 0 Channel 0 analog input 37

10-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

CA37-2 - AD12-16/16F ADAPTOR TO SECOND STRING OF AlM-16's

If you desire to construct a cable yourself, the following chart provides the recommended
pin connections. The cable requires two 37 pin D type female connectors. Use caution,
and ensure that in the positions where N/C is specified, that no connections are made.

AIM-16P AIM-16P FUNCTION AD12-16/16F FUNCTION AD12-16
1 +12 volt power N/C
2 unused Channel 7 analog input 30
3 Gain selection - bit 0 Digital input #1, set for output 6
4 unused -5V REF N/C
5 Gain selection - bit 1 Digital input #2, set for output 24
6 Gain selection - bit 2 Digital input #3, set for output 5
7 Address selection - bit 0 Digital output #0 23
8 Address selection - bit 1 Digital output #1 4
9 Address selection - bit 2 Digital output #2 22
10 Address selection - bit 3 Digital output #3 3
11 Common (logic ground) Common (Logic ground) 7
12 unused Channel 6 analog input 31
13 unused Channel 5 analog input 32
14 unused Channel 4 analog input 33
15 unused Channel 3 analog input 34
16 unused Channel 2 analog input 35
17 unused Channel 1 analog input 36
18 LL GND - Analog Common LL GND - Analog Common 19
19 +10 V REF N/C
20 -12 volt power N/C
21 unused Channel 0 analog input 37
22 unused LL GND - Analog Common 28
23 unused D/A channel 0 output 9
24 unused D/A channel 0 reference input 10
25 unused Digital input #0, A/D trigger 25
26 unused D/A channel 1 reference input 26
27 unused D/A channel 1 output 27
28 +10 V REF return N/C
29 +5 volt power +5 volt power 1
30 Output channel 7 Channel 15 analog input 11
31 Output channel 6 Channel 14 analog input 12
32 Output channel 5 Channel 13 analog input 13
33 Output channel 4 Channel 12 analog input 14
34 Output channel 3 Channel 11 analog input 15
35 Output channel 2 Channel 10 analog input 16
36 Output channel 1 Channel 9 analog input 17
37 Output channel 0 Channel 8 analog input 18

10-3

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

(This page purposely omitted)

10-4

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

ANALOG INPUTS

Channels:
Resolution:
Accuracy:

Voltage Range:
Coding:
Overvoltage:

Input Current:
Temp. Coefficient:

Zero:

SPECIFICATIONS

Switch selectable, 8 differential (Hi/Lo/Gnd) or 16 single-ended.
12 binary bits.

Can be calibrated to 0.01% of reading £1 bit.

At Gain 1, 2, 5, 10: 0.002% typical,

0.04% maximum w/o recalibration.

Switch selectable, £10V, 5V, +2.5V, 1V, £0.5V or 0-10V, 0-5V,
0-2V, 0-1V

True binary for unipolar inputs and offset binary for bipolar inputs.
Continuous single channel, to £15V without damage.

1.1 nA maximum, 125 pA typical at 25°C.

Gain: £50 PPM/°C at gain 0.5, 1, and 10.

178 PPM/°C at gain 2.

163 PPM/°C at gain 5.

+27 PPM/°C maximum at gain 10.

+107 PPM/°C maximum at gain 1.

A/D SPECIFICATION

Type:
Resolution:
Conversion Time:

Monotonicity:
Linearity:

Zero Drift:

Gain Drrift:
Trigger Source:

Successive approximation.

12 binary bits.

AD12-16: 15 usec max., 12 usec typical.

AD12-16F: 9.5 usec max., 7.5 usec typical.

Guaranteed over operating temperature range.

11 bit.

+10 PPM/°C maximum.

145 PPM/°C maximum.

Software selectable, external trigger, programmable timer, or
program command.

SAMPLE AND HOLD AMPLIFIER

Acquisition Time:

1 microsecond to 0.01% typical for full scale step function input.

Aperture Uncertainty: 0.3 nanosecond typical.

REFERENCE VOLTAGE OUTPUT

Voltage:
Temp. Coefficient:
Load Drive:

-5.0VDC +0.05VDC.
+30PPM/°C.
+5mA maximum.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

D/A SPECIFICATION

Channels:
Type:
Linearity:
Monotonicity:
Output Range:

Output Drive:
Output Resistance:
Ref Input Range:
Gain:

2, independent.

12-bit, double-buffered, multiplying.

+1/2bit.

+1/2bit.

0 to +5VDC when using the -5V reference. May also be used with
other DC or AC reference input. Maximum output limit +/10V.

£10 mA minimum.

<0.1 ohm.

+10V.

1.000, adjustable 1%.

Settling Time: 2 microseconds to 0.01% for full-scale step input.
DIGITAL I/O
Inputs: Logic high: 2.0 to 5.0 VDC at 20 uA maximum at 2.7V.
Logic low: -0.5to +0.8 VDC at -0.4mA maximum.
Outputs: Logic high: 2.4V minimum at -0.4mA source.
Logic low: 0.5V maximum at 8.0mA sink.
INTERRUPT CHANNEL
Levels: Levels 2 through 7, software selectable.
Enable: Via INTE of Control Register. Interrupts are latched in an internal

flip-flop on the card. The state of this flip-flop corresponds to the INT
bit in the Status Register. Service routines should acknowledge and
re-enable the interrupt flip-flop.

DIRECT MEMORY ACCESS CHANNEL

Levels:
Enable:
Termination:
Transfer:

Levels 1 or 3, switch selectable.

Via DMA bit of Control Register.

By interrupt on terminal count (or auto- initialize).

Capable of 150,000 transfers per second. User is responsible for
initialization of the DMA controller in the computer. With the DMA bit
set, double-byte requests are generated at the end of each A/D
conversion, Data are latched and available for transfer until the end
of the following A/D conversion. The transfer sequence is low
byte/high byte.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

PROGRAMMABLE TIMER

Type: 82C54-2 programmable interval timer.

Counters: Three 16-bit down counters, two permanently concatenated with
1/10MHz clock as programmable timer. One is uncommitted.

Output Drive: 2.2mA at 0.45V (5 LSTTL loads).

Input Gate: TTL/DTL/CMOS compatible.

Clock Frequency: DC to 10MHz.
Active Count Edge: Negative edge.
Min Clock Pulse Width: 30nS high/50nS low.

Timer Range: 2.5 MHz to <1 pulse/hr.
ENVIRONMENTAL

Operating Temp: 0 to 50°C.

Storage Temp: -20 to +70°C.

Humidity: 0 to 90% RH, non-condensing.
Weight: 10 oz.

Power Required: +5VDC: 900 mA typical.
+12VDC: 250 mA typical.

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

(This page purposely omitted.)

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

WARRANTY

Prior to shipment, ACCES products are thoroughly inspected and tested to applicable
specifications. However, should equipment failure occur, ACCES assures its customers
that prompt service and support will be available. All equipment originally manufactured by
ACCES which is found to be defective will be repaired or replaced subject to the following
considerations.

TERMS AND CONDITIONS

If a unit is suspected of failure, contact ACCES' Customer Service department. Be
prepared to give the unit model number, serial number, and a description of the failure
symptom(s). We may suggest some simple tests to confirm the failure. We will assign a
Return Material Authorization (RMA) number which must appear on the outer label of the
return package. All units/components should be properly packed for handling and returned
with freight prepaid to the ACCES designated Service Center, and will be returned to the
customer's/user's site freight prepaid and invoiced.

COVERAGE

First Three Years: Returned unit/part will be repaired and/or replaced at ACCES option with
no charge for labor or parts not excluded by warranty. Warranty commences with
equipment shipment.

Following Years: Throughout your equipment's lifetime, ACCES stands ready to provide
on-site or in-plant service at reasonable rates similar to those of other manufacturers in the
industry.

EQUIPMENT NOT MANUFACTURED BY ACCES
Equipment provided but not manufactured by ACCES is warranted and will be repaired
according to the terms and conditions of the respective equipment manufacturer's warranty.

GENERAL

Under this Warranty, liability of ACCES is limited to replacing, repairing or issuing credit (at
ACCES discretion) for any products which are proved to be defective during the warranty
period. In no case is ACCES liable for consequential or special damage arising from use
or misuse of our product. The customer is responsible for all charges caused by
modifications or additions to ACCES equipment not approved in writing by ACCES or, if in
ACCES opinion the equipment has been subjected to abnormal use. "Abnormal use" for
purposes of this warranty is defined as any use to which the equipment is exposed other
than that use specified or intended as evidenced by purchase or sales representation.
Other than the above, no other warranty, expressed or implied, shall apply to any and all
such equipment furnished or sold by ACCES.

121

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

(This page purposely omitted.)

12-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

APPENDIX A
LINEARIZATION

A common requirement encountered in data acquisition is to linearize or compensate the
output of non-linear transducers such as thermocouples, flowmeters, etc. The starting
point for any linearizing algorithm is a knowledge of the calibration curve (input/output
behavior) of the transducer. This may be derived experimentally or may be available in
manufacturer's data or standard tables.

There are several approaches to linearization. The two most common are piecewise
linearization using look up tables and use of a mathematical function to approximate the
non-linearity. Amongst the mathematical methods, polynomial expansion is one of the
easiest to implement. The utility program, POLY.EXE allows you to generate up to a 10th
order polynomial approximation. For most practical applications, a fifth-order polynomial
approximation is usually adequate.

Before you start the program have the desired input/output data or calibration data handy.
This will be in the form of x and f(x) values where x is the input to your system and f(x) is
the resulting output. To run the program, type POLY and <ENTER> at the command line.
The program will then prompt you for the desired order of the polynomial, then the number
of pairs that you wish to use to generate the polynomial. You then enter the data pairs and
the polynomial is computed and displayed.

For example, given the following data points, let's generate a 5th order polynomial to
approximate this function:

X 0 1 2 3 4 5 6 7 8 9 10

£(X) 3 2 3 5 3 4 3 2 2 3 2

The order of the polynomial that you desire will be 5 and the number of data points that you
enter will be 11. After the data points are entered, the program gives the following output:
For the polynomial: f(x) = C(0) + C(1)x' + C(2)x* + C(3)x* + C(4)x* + C(5)x°, the
coefficients will be:
COEFFICIENT (5) : -0.003151
COEFFICIENT (4) : 0.081942
COEFFICIENT (3) : -0.740668
COEFFICIENT (2) : 2.635998
COEFFICIENT (1) : -2.816607
COEFFICIENT (0) : 2.956044
QUALITY OF SOLUTION (sum of the errors squared): 2.797989

The goal is to make the quality as close to 0 as possible. The program checks the resulting
polynomial with the data pairs that you entered. It computes the f(x) values for each x
value entered using the polynomial, subtracts the result from the supplied value of f(x), and
then squares the result. The squared results are then summed to compute the QUALITY.

A-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

If the computed f(x) values were exact, this value would be 0. But, since this is an
approximation, this value will usually be something greater than 0.

The QUALITY can be used to indicate how good a particular solution is. If the range of
points is very wide or if the points make transition from negative to positive values, then
QUALITY will suffer accordingly. For these cases, it may be better to use multiple
polynomials rather than just one.

As an example, the following data are taken from the NIST tables for type T thermocouples:

X -6.258 -5.603 -4.468 -3.378 -1.182 0 2.035

f(x) -270 -200 -150 -100 -50 0 50

4.277 6.702 9.286 12.01 14.86 17.82 20.87

100 150 200 250 300 350 400

If we take all the data and compute one 5th order polynomial, the QUALITY is 473.543732;
not very good. Now divide the data into two polynomials; one on the negative side
including 0 and one on the positive side also using 0. The results will show a QUALITY of
90.732620 for the negative side and a QUALITY of 0.005131 for the positive side. Thus,
by using two polynomials, you have made the positive side very accurate and dramatically
improved the negative side.

Accuracy of the negative side can be further improved by adding points. For example, add
the following pairs to the negative side of the polynomial for a type T thermocouple:

X -6.181 -5.167 -4.051 -2.633

f(x) -250 -175 -125 -75

If you run the new data, the QUALITY is improved to 69.555611, but still perhaps not as
good as you would like.

Thus, you may use the QUALITY as a means to determine how good the polynomial is.
You can experiment with both order and number of data points until you are satisfied with
the solution. Incidentally, this example also shows that the smaller the range of x values,
the better the solution.

The computational method used is a least squares solution using Gauss Elimination with
partial pivoting to improve accuracy.

APPENDIX B
BASIC INTEGER VARIABLE STORAGE

Data are stored in integer variables (% type) in 2's complement form. Each integer variable

B-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

uses 16 bits or two bytes of memory. Sixteen bits of binary data is equivalent to 0 to
65,535 decimal but the 2's complement convention interprets the most significant bit as the
sign bit so the actual range is -32,768 to +32,767. Numbers are represented as follows:

HIGH BYTE LOW BYTE
NUMBER

B|B |B B |B|B|B |B B|B|B B |B |[B B |[B
716 5 4 3 2 1 0 716 5 4 3 2 1 0
+32767 (| O [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+10000 [O [O 1 0 0 1 1 1 010 0 1 0 0 0 0
+1 ({0]0 0 0 0 0 0 0 0 10 0 0 0 0 0 1
0Offo]o 0 0 0 0 0 0 0|0 0 0 0 0 0 0
-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-10000 | 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0
-32768 || 1 [O 0 0 0 0 0 0 0 10 0 0 0 0 0 0

Note: Bit 7 (B7) of the high byte is the sign bit. (1=negative, 0=positive)

Integer variables are the most compact form of storage for the 12-bit data from the A/D
converter and the 16-bit data from the interval timer. Therefore, to conserve memory and
disk space and to optimize execution time, all data exchange via the CALL is through
integer type variables.

This poses a programming problem when handling unsigned numbers in the range 32,768
to 65,535. If you wish to input or output an unsigned integer greater than 32,767, then it
is necessary to work out what its 2's complement signed equivalent is. For example, if
50,000 decimal is to be loaded into a 16-bit counter, an easy way to convert this to binary
is to enter BASIC and execute PRINT HEX$(50000). This returns C350 which, in binary
formis: 1100 0011 0101 0000. Since the most significant bit is a one, this would be stored
as a negative integer and, in fact, the correct integer variable value would be 50,000 -
65,536 =-15,536.

B-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

(This page purposely omitted.)

B-3

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

APPENDIX C
DIRECT MEMORY ACCESS

IBM PC DMA STRUCTURE

The DMA controller provides four prioritized direct memory access (DMA) channels. Each
channel has two control signals associated with it; a DMA request (DRQ) and a DMA
acknowledge (DACK).

DMA provides for the bi-directional transfer of data between 1/0O devices and memory
without passing the data through the CPU. The advantage is a significant improvement
in the speed of the data transfer. For example, a normal program transfer would entail:

Clk Periods

LOOP: IN AX,DX ;read data from 1/O port 8
MOV [DI],AX ;transfer to memory @ DS:DlI 10
CMP DI,LIMIT :end of transfer? 4
Jz EXIT ;yes, exit 4
INC DI ;no, continue 2
INC DI ;increment memory pointer 2
JMP LOOP ;repeat 15

EXIT: ;continue

The total clock periods are 43, which on a4.77 MHz IBM compatible PC is 9 uS execution
time.

In practice, an A/D service routine would be more involved because it would require
checking the status of the A/D to see if the data was ready, etc. and execution time makes
it difficult to handle data conversion rates in excess of 10 KHz even in 4.77 MHz computers.
Stillanother serious shortcoming to programmed transfers through the CPU is that they are
liable to disruptions from interrupts!

DMA avoids these problems. The A/D on the AD12-16/16F is triggered by the
programmable interval timer (or an external Start pulse), performs a conversion, and issues
two sequential DRQ's at the end of conversion. Upon receipt of each DACK, the two bytes
of data corresponding to the conversion are transferred to the memory location put on the
memory address bus by the DMA controller. This transfer usually takes place in a few
microseconds and is undisturbed by interrupts. Since A/D data are latched and held until
the end of the next conversion, there is a maximum of 10 microseconds available (A/D
conversion at maximum sample rate) for the transfer to take place. This is more than
enough time, even allowing for activity on higher priority DMA levels.

When the DMA controller receives a DRQ, it issues a hold request to the CPU asking it to
release the address and data bus to the DMA controller. As soon as the CPU is able to do
this (one machine cycle) it responds by returning a hold acknowledge (HLDA) to the DMA
controller to tell it that it has the bus. The DMA controller then supplies the memory

C-1

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

address on the address bus, issues a DACK to the I/O device to tell it to place data on the
data bus, and, also, provides simultaneous I/O read (IOR) and memory write pulses
(MEMW) to effect the data transfer. Control is then returned to the CPU for at least one
machine cycle before another DMA cycle is possible.

The DMA controller handles a total of four DMA channels; three of which are available on
the expansion bus:

DMA FUNCTION SIGNALS PRIORITY
LEVEL
0 Memory Refresh Not on Bus Highest
1 Not Used DRQ1/DACK1]
2 Floppy Disk(s) DRQ2/DACK2]
3 Hard Disk(XT) DRQ3/DACK3 Lowest

DMA level 0 performs a dummy read of each memory location every 15 microseconds
thereby refreshing the dynamic memory. It is important to not interfere with setup or
operation of level 0 as this may lead to loss of memory and a computer crash.

DMA level 1 is not committed to any internal device and is generally available on all PC's
although, if you have them installed, some local area network interfaces may use this level.

DMA level 2 is always used by the floppy disk to read/write data and cannot be shared with
other devices.

On floppy-disk-only machines, DMA level 3 is free. If the PC does have a hard disk,
depending on the type of hard disk controller used, level 3 may be free. The hard disk
controller contains the fixed disk BIOS. Some manufacturers make use of block moves
(MQOVs), others use hardware DMA to transfer data between the disk controller and DOS
disk buffers in memory. This is transparent to the user as the BIOS calls are functionally
identical. However, when you install another peripheral that uses DMA, it's useful to know
whether or not your controller uses level 3.

The AD12-16/16F can be operated on either levels 1 or 3. Since the AD12-16/16F is a
relatively slow device in terms of DMA service, the higher priority level 1 offers little real
performance advantage over level 3. Note also that until a DMA operation is enabled on
the AD12-16/16F, the DMA request line (DREQ) from the card is tri-stated. Therefore, you
can share it with other devices on the same level as long as they won't be enabled at the
same time.

PAGE REGISTER AND DMA CONTROLLER FUNCTIONS

The 8237 DMA controller was designed in the days of eight bit CPU's and 64K memories
and it can only handle a 16-bit address (AO through A15). Since the 8088 CPU uses a

C-2

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

20-bit address bus, the higher order bits (A16 through A19) are provided by a set of sup-
plemental registers for each DMA level. These are known as the DMA page registers and,
although there are four DMA levels, there are only three page registers. Level 0 does not
have a dedicated page register because it is used internally for memory refresh and does
not require a page register because it refreshes all pages regardless of the A16-A19
address bits. To economize, it shares the same page register as level 1. Page register /O
locations are:

DMA LEVEL PAGE REGISTER /O LOCATION
0&1 1 83 HEX
2 2 81 HEX
3 3 82 HEX

The DMA controller contains other registers that also must be initialized before DMA
transfer. Which registers you will use will depend on the DMA channel that you are using.
DMA channel specific registers are:

REGISTER ADDRESS | REGISTER FUNCTION
02 HEX Channel 1 memory start address
03 HEX Channel 1 number of byte transfers
06 HEX Channel 3 memory start address
07 HEX Channel 3 number of byte transfers
0A HEX DMA channel enable/disable
0B HEX Mode register
0C HEX A write clears high/low byte flip-flop

In addition, a fifth register, the command register, is set by the BIOS at boot-up and should
not be altered.

Before a DMA operation can be started, all those registers must be initialized. This is taken
care of by TASK 6 of the standard driver. Note that, in addition to setting up the DMA
controller, the AD12-16/16F control register must also be loaded to enable the
AD12-16/16F hardware.

There are two types of DMA operation provided for in the A16DRYV driver. The firstis a
straight one-time data transfer. From 1 to 32,767 conversions can be transferred to any
64K page of memory. Atthe end of the transfer, an interrupt is generated that shuts down
the DMA hardware and signals completion of the operation. This is the non-recycle mode.
The second type of operation is an auto-initialize or recycle mode where, upon reaching
the final word count, the DMA controller automatically resets to the first memory location.
In this case, the DMA is continuous, and the word count specifies the length of the "circular

C-3

ANALOG/DIGITAL I/0 CARD AD12-16/16F USER MANUAL

buffer" that is created.

Information on the progress of a DMA transfer can be obtained using TASK 8 and data can
be transferred from a memory buffer area to an array using TASK 9.

C-4

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	FIGURE 2-1: OPTION SELECTION MAP

	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	APPENDIX A

	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128

